- #1
Rizzamabob
- 21
- 0
"Show that if a square matrix C satisfies
C^3 + C^2 + C + I = 0
then the inverse C^-1 exists and
C^-1 = -(C^2 + C + I)
C^3 + C^2 + C + I = 0
then the inverse C^-1 exists and
C^-1 = -(C^2 + C + I)