- #1
Akorys
- 23
- 3
Homework Statement
Prove the limit [tex] \lim_{x\rightarrow 0} \frac{\log(x+1)}{x} =1[/tex]
Homework Equations
Use the relation [itex] 1 - \frac{1}{x} \leq \ \log x \leq x-1\ \text{if}\ x>0 [/itex]
The Attempt at a Solution
We need to show that [itex] |\frac{\log(x+1)}{x} - 1 | \lt \epsilon\ \text{whenever}\ 0 \lt |x| \lt \delta [/itex]. Using the relation above, we find [tex] \log x \lt x[/tex] [tex] \frac{\log(x+1)}{x} \lt \frac{x+1}{x} [/tex]
We can prove the right-hand limit by considering only those [itex] x \gt 0 [/itex], since in that case [itex] \frac{\log(|x|+1)}{|x|} = |\frac{\log(x+1)}{x}| [/itex]. [tex] |\frac{\log(x+1)}{x}-1| \leq |\frac{\log(x+1)}{x}| + 1 \lt |\frac{x+1}{x}| +1 = \epsilon [/tex]
We need a [itex] \delta\ \text{such that} \ 0 \lt|x|\lt\delta[/itex]. If [tex] \delta = \frac{1}{\epsilon -1} =|\frac{x}{x+1}| \lt |x|,[/tex] then this proves the right-hand limit. However, I do not know how to account for [itex] -1\lt x \lt 0 [/itex], since [itex] \log(x+1) [/itex] is defined for such x and thus has a left-hand limit.
Also, please let me know if my current proof is flawed since I do not completely understand how to do epsilon-delta proofs. Thank you!