- #1
rjw5002
Homework Statement
Consider [tex]\Re[/tex] with metric [tex]\rho[/tex] (x,y) = |x-y|. Verify for all x [tex]\in[/tex] [tex]\Re[/tex] and for any [tex]\epsilon[/tex] > 0, (x-[tex]\epsilon[/tex], x+[tex]\epsilon[/tex]) is an open neighborhood for x.
Homework Equations
Neighborhood/Ball of p is a set Nr(p) consisting of all q s.t. d(p,q)<r for some r>0.
The Attempt at a Solution
Take [tex]\alpha[/tex] > 0, [tex]\alpha[/tex] < [tex]\epsilon[/tex]. Take [tex]\rho[/tex](x, x-[tex]\alpha[/tex]) = |x-(x- [tex]\alpha[/tex] )| = [tex]\alpha[/tex] < [tex]\epsilon[/tex].
and
Take [tex]\rho[/tex](x, x+[tex]\alpha[/tex]) = |x-(x+[tex]\alpha[/tex])| = [tex]\alpha[/tex] < [tex]\epsilon[/tex].
Therefore, any positive [tex]\alpha[/tex] < [tex]\epsilon[/tex] is in N[tex]\epsilon[/tex](x).
I initially misplaced this thread, and was told that this shows that [itex](x-\epsilon, x+\epsilon)[/itex] is a neighborhood but it was not an "open neighborhood." But there is a theorem (2.19 in Rudin) that says: "Every neighborhood is an open set." I must be misinterpreting this theorem then?
(x - [tex]\epsilon[/tex]) is a limit point of the set, but (x - [tex]\epsilon[/tex]) [tex]\notin[/tex] N[tex]\epsilon[/tex] (x), and (x + [tex]\epsilon[/tex]) is a limit point of the set, but (x + [tex]\epsilon[/tex]) [tex]\notin[/tex] N[tex]\epsilon[/tex] (x). Therefore the set is open.
Will this complete the proof?