- #1
PhysKid24
- 22
- 0
For a finite group G, I need to prove that the order of an element in G is a divisor of the order of the group. I'm not sure what this exactly means, but I think you have to use cyclic groups such that G={a^0,a^1,...,a^n) where n+1 is the order of the group and a^0 is the identity element. So I think I need to use Lagrage's thm stating that the order of a subgroup is a divisor of the order of the group. So to find a subgroup of G seems to be a problem. Could I use a^m as a subgroup, where m < n+1?? What is exactly meant by order of the element. Thanks.