- #1
Saitama
- 4,243
- 93
Problem:
Consider the non zero vectors $\vec{a}$, $\vec{b}$, $\vec{c}$ and $\vec{d}$ such that no three of which are coplanar then prove that $\vec{a}\left[\vec{b} \vec{c} \vec{d}\right]+\vec{c}\left[\vec{a} \vec{b} \vec{d}\right]=\vec{b}\left[\vec{a} \vec{c} \vec{d}\right]+\vec{d}\left[\vec{a} \vec{b} \vec{c}\right]$. Hence prove that if $\vec{a}$, $\vec{b}$, $\vec{c}$ and $\vec{d}$ represent the position vectors of the vertices of a plane quadrilateral then
$$\frac{\left[\vec{a} \vec{b} \vec{d}\right]+\left[\vec{b} \vec{c} \vec{d}\right]}{\left[\vec{a} \vec{b} \vec{c}\right]+\left[\vec{a} \vec{c} \vec{d}\right]}=1$$
Attempt:
I am stuck at the first part of the problem. Looking at the two sides, it seems to me that I somehow need to show $\vec{a}\left[\vec{b} \vec{c} \vec{d}\right]$ is same as $\vec{b}\left[\vec{a} \vec{c} \vec{d}\right]$. Since
$$\vec{a}\left[\vec{b} \vec{c} \vec{d}\right]=\vec{a}\left(\vec{b}\cdot \left(\vec{c}\times \vec{d}\right)\right)$$
and
$$\vec{b}\left[\vec{a} \vec{c} \vec{d}\right]=\vec{b} \left(\vec{a}\cdot \left(\vec{c}\times \vec{d}\right)\right)$$
It looks like I need to swap $\vec{a}$ and $\vec{b}$ but that is not a valid step. I don't know how to proceed with the problem. :(
Any help is appreciated. Thanks!
Consider the non zero vectors $\vec{a}$, $\vec{b}$, $\vec{c}$ and $\vec{d}$ such that no three of which are coplanar then prove that $\vec{a}\left[\vec{b} \vec{c} \vec{d}\right]+\vec{c}\left[\vec{a} \vec{b} \vec{d}\right]=\vec{b}\left[\vec{a} \vec{c} \vec{d}\right]+\vec{d}\left[\vec{a} \vec{b} \vec{c}\right]$. Hence prove that if $\vec{a}$, $\vec{b}$, $\vec{c}$ and $\vec{d}$ represent the position vectors of the vertices of a plane quadrilateral then
$$\frac{\left[\vec{a} \vec{b} \vec{d}\right]+\left[\vec{b} \vec{c} \vec{d}\right]}{\left[\vec{a} \vec{b} \vec{c}\right]+\left[\vec{a} \vec{c} \vec{d}\right]}=1$$
Attempt:
I am stuck at the first part of the problem. Looking at the two sides, it seems to me that I somehow need to show $\vec{a}\left[\vec{b} \vec{c} \vec{d}\right]$ is same as $\vec{b}\left[\vec{a} \vec{c} \vec{d}\right]$. Since
$$\vec{a}\left[\vec{b} \vec{c} \vec{d}\right]=\vec{a}\left(\vec{b}\cdot \left(\vec{c}\times \vec{d}\right)\right)$$
and
$$\vec{b}\left[\vec{a} \vec{c} \vec{d}\right]=\vec{b} \left(\vec{a}\cdot \left(\vec{c}\times \vec{d}\right)\right)$$
It looks like I need to swap $\vec{a}$ and $\vec{b}$ but that is not a valid step. I don't know how to proceed with the problem. :(
Any help is appreciated. Thanks!