- #1
anemone
Gold Member
MHB
POTW Director
- 3,883
- 115
Given the positive real numbers $a,\,b,\,c$ and $x,\,y,\,z$ satisfy the condition
$a+x=b+y=c+z=1$
Prove that \(\displaystyle \left(abc+xyz\right)\left(\frac{1}{ay}+\frac{1}{bz}+\frac{1}{cx}\right)\ge 3\).
$a+x=b+y=c+z=1$
Prove that \(\displaystyle \left(abc+xyz\right)\left(\frac{1}{ay}+\frac{1}{bz}+\frac{1}{cx}\right)\ge 3\).