- #1
cowcow8866
- 11
- 0
Homework Statement
Prove
(∂V/∂T)_s/(∂V/∂T)_p = 1/1-(gamma) (gamma = Cp/Cv)
Homework Equations
(∂V/∂T)_s = -C_v (kappa)/(beta)T (where beta = 1/V(∂V/∂T)_p, kappa = -1/V(∂V/∂P)_T
C_v= - T(∂P/∂T)_v(∂V/∂T)_s
The Attempt at a Solution
As part(a) ask me to find C_v, I do it similar for C_p
(∂S/∂T)_p=1/T(∂U/∂T)_p
C_p=T(∂S/∂T)_p=-T(∂P/∂T)_s/(∂P/∂S)_T=-T(∂P/∂T)_s(∂V/∂T)_p
(∂V/∂T)_s/(∂V/∂T)_p = -C_v/T(∂P/∂T)_v /C_p/-T(∂P/∂T)_s=C_v(∂P/∂T)_s/ C _p(∂P/∂T)_v
Then, i cannot figure out the remaining calculation out...
Last edited: