- #1
brotherbobby
- 702
- 163
- Homework Statement
- If ##\pmb{A+B+C=\pi}## and if ##\pmb{\sin^2A+\sin^2B+\sin^2C=\sin A\sin B+\sin B\sin C+\sin C\sin A}##, then show that ##\pmb{\boxed{A=B=C}}##.
- Relevant Equations
- 1. ##\sin x-\sin y=2 \cos\dfrac{x+y}{2} \sin\dfrac{x-y}{2}##
2. ##\cos(\pi/2 - \theta)=\sin\theta##
Attempt : I wasn't able to go far into the solution. Below is a rough attempt.
##\begin{equation*}
\begin{split}
\sin^2A-\sin A\sin B+\sin^2B-\sin B\sin C+\sin^2C-\sin C\sin A & = 0\\
\sin A(\sin A - \sin B)+\sin B (\sin B - \sin C)+\sin C (\sin C - \sin A) & = 0\\
\sin A \cos \dfrac{A+B}{2} \sin \dfrac{A-B}{2}+\sin B \cos \dfrac{B+C}{2} \sin \dfrac{B-C}{2}+\sin C \cos \dfrac{C+A}{2}\sin \dfrac{C-A}{2}&=0\\
\sin A \sin C \sin \dfrac{A-B}{2}+\sin B \sin A \sin \dfrac{B-C}{2}+\sin C \sin B \sin \dfrac{C-A}{2}&=0\\\end{split}
\end{equation*}
##
I am stuck at the last step.
A hint or clue would be welcome.