- #1
Oblio
- 398
- 0
Consider the complex number z=e[tex]_{i\theta}[/tex] = cos[tex]\theta[/tex]+isin[tex]\theta.[/tex] By evaluating z[tex]^{2}[/tex] two different ways, prove the trig identities cos2[tex]\theta[/tex] = cos[tex]^{2}[/tex][tex]\theta[/tex] - sin[tex]^{2}[/tex][tex]\theta[/tex] and sin2[tex]\theta[/tex] = 2sin[tex]\theta[/tex]cos[tex]\theta[/tex].
A question about the approach to this question:
How do you guys approach the task of 'evaluating' something, when told to do so, like here.
I find myself doing random manipulations without knowledge of whether the road I'm on is even close to the correct path or not.
Evaluate seems like such a general instruction...
Anyways,
If I square z I get;
z[tex]^{2}[/tex] = cos[tex]\theta[/tex][tex]^{2}[/tex] + i[tex]^{2}[/tex]sin[tex]\theta[/tex][tex]^{2}[/tex]
z[tex]^{2}[/tex] = cos[tex]\theta[/tex][tex]^{2}[/tex] - sin[tex]\theta[/tex][tex]^{2}[/tex]
If I sub z[tex]^{2}[/tex] back in I get 0 so that's wrong.
Is the use of the 'e definition' necessary for this? I kind of want to see how I ought to be approaching this 'evaluation'.
Thanks, as always
A question about the approach to this question:
How do you guys approach the task of 'evaluating' something, when told to do so, like here.
I find myself doing random manipulations without knowledge of whether the road I'm on is even close to the correct path or not.
Evaluate seems like such a general instruction...
Anyways,
If I square z I get;
z[tex]^{2}[/tex] = cos[tex]\theta[/tex][tex]^{2}[/tex] + i[tex]^{2}[/tex]sin[tex]\theta[/tex][tex]^{2}[/tex]
z[tex]^{2}[/tex] = cos[tex]\theta[/tex][tex]^{2}[/tex] - sin[tex]\theta[/tex][tex]^{2}[/tex]
If I sub z[tex]^{2}[/tex] back in I get 0 so that's wrong.
Is the use of the 'e definition' necessary for this? I kind of want to see how I ought to be approaching this 'evaluation'.
Thanks, as always