- #1
Linux
- 7
- 0
Let \(\displaystyle (X, d)\) be a metric space, \(\displaystyle AE_0(X) = \{ u : X \rightarrow \mathbb{R} \ : \ u^{-1} (\mathbb{R} \setminus \{0 \} ) \ \ \text{is finite}, \ \sum_{x \in X} u(x)=0 \}\),
for \(\displaystyle x,y \in X, \ x \neq y, \ m_{xy} \in AE_0(X), \ \ m_{xy} (x)=1, \ m_{xy}(y)=-1, \ m_{xy}(z)=0\) for \(\displaystyle z \neq x, y\) and \(\displaystyle m_{xx} \equiv 0\)
for \(\displaystyle u \in AE_0(X), \ ||u||_d = \inf \{ \sum_{k=1}^n |a_k| d(x_k, y_k) \ : \ u= \sum_{k=1}^n a_km_{x_k, y_k}, a_k \in \mathbb{R}, x_k, y_k \in X, n \ge 1 \}\)
How to prove that \(\displaystyle ||u||_d = 0 \ \iff \ u=0\)?
I know it is not so obvious that then all terms in the sum \(\displaystyle \sum_{k=1}^n |a_k| d(x_k, y_k)\) must be zero.
Could you help me out a bit?
Thank you.
for \(\displaystyle x,y \in X, \ x \neq y, \ m_{xy} \in AE_0(X), \ \ m_{xy} (x)=1, \ m_{xy}(y)=-1, \ m_{xy}(z)=0\) for \(\displaystyle z \neq x, y\) and \(\displaystyle m_{xx} \equiv 0\)
for \(\displaystyle u \in AE_0(X), \ ||u||_d = \inf \{ \sum_{k=1}^n |a_k| d(x_k, y_k) \ : \ u= \sum_{k=1}^n a_km_{x_k, y_k}, a_k \in \mathbb{R}, x_k, y_k \in X, n \ge 1 \}\)
How to prove that \(\displaystyle ||u||_d = 0 \ \iff \ u=0\)?
I know it is not so obvious that then all terms in the sum \(\displaystyle \sum_{k=1}^n |a_k| d(x_k, y_k)\) must be zero.
Could you help me out a bit?
Thank you.