- #1
MatthewD
- 15
- 0
Homework Statement
Let the function:
f : I→ I be continuous on I and differentiable on the open set I
for I := [0,1]
Now I need to use Rolle’s Theorem to show that if f'(x) is not equal to 1 in (0, 1), then there is exactly one such point t
Homework Equations
I know that there's at least 1 point t ∈ [0, 1] such that f(t) = t.
The Attempt at a Solution
I've tried 3 different proofs for this, but none of them are giving me uniqueness of t. Please help!