- #1
andresordonez
- 68
- 0
This is part 2 of problem 4.8 from "Physics of Atoms and Molecules - Bransden, Joachain"
Deduce [4.106] from [4.105]
[tex] \tilde{M}_{ba} = - \frac{m\omega_{ba}}{\hbar c} \langle \psi _b \vert z \dot{x} \vert \psi _a \rangle [/tex] [4.105]
[tex] \tilde{M}_{ba} = -\frac{\omega_{ba}}{2\hbar c} \langle \psi_b \vert L_y \vert \psi_a \rangle - \frac{i m \omega_{ba}^2}{2\hbar c} \langle \psi_b \vert zx \vert \psi_a \rangle [/tex] [4.106]
[tex] -\frac{m\omega_{ba}}{\hbar c}\left\langle \psi_{b}\vert z\dot{x}\vert\psi_{a}\right\rangle =-\frac{m\omega_{ba}}{i\hbar^{2}c}\left\langle \psi_{b}\vert z\left[x,H_{0}\right]\vert\psi_{a}\right\rangle =i\frac{m\omega_{ba}}{\hbar^{2}c}\left\langle \psi_{b}\vert\left(\left[zx,H_{0}\right]-\left[z,H_{0}\right]x\right)\vert\psi_{a}\right\rangle =i\frac{m\omega_{ba}}{\hbar^{2}c}\left\langle \psi_{b}\vert\left(\left[zx,H_{0}\right]-i\hbar\dot{z}x\right)\vert\psi_{a}\right\rangle [/tex]
[tex] =-i\frac{m\omega_{ba}^{2}}{\hbar c}\left\langle \psi_{b}\vert zx\vert\psi_{a}\right\rangle +\frac{\omega_{ba}}{\hbar c}\left\langle \psi_{b}\vert p_{z}x\vert\psi_{a}\right\rangle =-\frac{\omega_{ba}}{\hbar c}\left\langle \psi_{b}\vert\left(L_{y}-zp_{x}\right)\vert\psi_{a}\right\rangle -i\frac{m\omega_{ba}^{2}}{\hbar c}\left\langle \psi_{b}\vert zx\vert\psi_{a}\right\rangle [/tex]
[tex] =-\frac{\omega_{ba}}{2\hbar c}\left\langle \psi_{b}\vert L_{y}\vert\psi_{a}\right\rangle -i\frac{m\omega_{ba}^{2}}{2\hbar c}\left\langle \psi_{b}\vert zx\vert\psi_{a}\right\rangle +\left[-\frac{\omega_{ba}}{2\hbar c}\left\langle \psi_{b}\vert L_{y}\vert\psi_{a}\right\rangle -i\frac{m\omega_{ba}^{2}}{2\hbar c}\left\langle \psi_{b}\vert zx\vert\psi_{a}\right\rangle +\frac{\omega_{ba}}{\hbar c}\left\langle \psi_{b}\vert zp_{x}\vert\psi_{a}\right\rangle \right] [/tex]
But then:
[tex] -\frac{\omega_{ba}}{2\hbar c}\left\langle \psi_{b}\vert L_{y}\vert\psi_{a}\right\rangle -i\frac{m\omega_{ba}^{2}}{2\hbar c}\left\langle \psi_{b}\vert zx\vert\psi_{a}\right\rangle +\frac{\omega_{ba}}{\hbar c}\left\langle \psi_{b}\vert zp_{x}\vert\psi_{a}\right\rangle =0? [/tex]
I tried to prove the last equation without success. Any help would be much appreciated.
Homework Statement
Deduce [4.106] from [4.105]
Homework Equations
[tex] \tilde{M}_{ba} = - \frac{m\omega_{ba}}{\hbar c} \langle \psi _b \vert z \dot{x} \vert \psi _a \rangle [/tex] [4.105]
[tex] \tilde{M}_{ba} = -\frac{\omega_{ba}}{2\hbar c} \langle \psi_b \vert L_y \vert \psi_a \rangle - \frac{i m \omega_{ba}^2}{2\hbar c} \langle \psi_b \vert zx \vert \psi_a \rangle [/tex] [4.106]
The Attempt at a Solution
[tex] -\frac{m\omega_{ba}}{\hbar c}\left\langle \psi_{b}\vert z\dot{x}\vert\psi_{a}\right\rangle =-\frac{m\omega_{ba}}{i\hbar^{2}c}\left\langle \psi_{b}\vert z\left[x,H_{0}\right]\vert\psi_{a}\right\rangle =i\frac{m\omega_{ba}}{\hbar^{2}c}\left\langle \psi_{b}\vert\left(\left[zx,H_{0}\right]-\left[z,H_{0}\right]x\right)\vert\psi_{a}\right\rangle =i\frac{m\omega_{ba}}{\hbar^{2}c}\left\langle \psi_{b}\vert\left(\left[zx,H_{0}\right]-i\hbar\dot{z}x\right)\vert\psi_{a}\right\rangle [/tex]
[tex] =-i\frac{m\omega_{ba}^{2}}{\hbar c}\left\langle \psi_{b}\vert zx\vert\psi_{a}\right\rangle +\frac{\omega_{ba}}{\hbar c}\left\langle \psi_{b}\vert p_{z}x\vert\psi_{a}\right\rangle =-\frac{\omega_{ba}}{\hbar c}\left\langle \psi_{b}\vert\left(L_{y}-zp_{x}\right)\vert\psi_{a}\right\rangle -i\frac{m\omega_{ba}^{2}}{\hbar c}\left\langle \psi_{b}\vert zx\vert\psi_{a}\right\rangle [/tex]
[tex] =-\frac{\omega_{ba}}{2\hbar c}\left\langle \psi_{b}\vert L_{y}\vert\psi_{a}\right\rangle -i\frac{m\omega_{ba}^{2}}{2\hbar c}\left\langle \psi_{b}\vert zx\vert\psi_{a}\right\rangle +\left[-\frac{\omega_{ba}}{2\hbar c}\left\langle \psi_{b}\vert L_{y}\vert\psi_{a}\right\rangle -i\frac{m\omega_{ba}^{2}}{2\hbar c}\left\langle \psi_{b}\vert zx\vert\psi_{a}\right\rangle +\frac{\omega_{ba}}{\hbar c}\left\langle \psi_{b}\vert zp_{x}\vert\psi_{a}\right\rangle \right] [/tex]
But then:
[tex] -\frac{\omega_{ba}}{2\hbar c}\left\langle \psi_{b}\vert L_{y}\vert\psi_{a}\right\rangle -i\frac{m\omega_{ba}^{2}}{2\hbar c}\left\langle \psi_{b}\vert zx\vert\psi_{a}\right\rangle +\frac{\omega_{ba}}{\hbar c}\left\langle \psi_{b}\vert zp_{x}\vert\psi_{a}\right\rangle =0? [/tex]
I tried to prove the last equation without success. Any help would be much appreciated.