- #1
ognik
- 643
- 2
I would like to take a 'real' ODE where I have some intuition of what it represents, and take it through to eigenvalues and vectors. I chose a highly simplified model of Deuteron from earlier in the text. (later I might try the real thing)
Given $ -\frac{\bar{h}^2}{2M}\nabla^2\psi +V\psi=E\psi , V=V_0 \: for\: 0\le r<a, 0 $ outside
I easily rearranged this to $ \nabla^2\psi+k_1^2\psi=0 $
At this stage the text substitutes $u(r)=r\psi(r)$ and gets the radial wave equation $ \d{^2{u}}{{r}^2}+k_1^2u=0 $
1) Despite the tempting similarity, I can't put $\nabla^2= \pd{^2{}}{{r}^2}=\d{^2{}}{{r}^2} \:for\: \psi(r) $, I know I have to transform the eqtn to spherical cords.
Pls ignore next 2 points for a while, I found a separation of variables approach that I think is what I need.
2) Laplaces eqtn in spherical form is a 3 term eqtn in $ r, \theta, \phi $. If $\psi $ was independent of both angles, I could drop the last 2 terms; probably the book does something like this - I need some help on this please?
3) Then I would be left with $ \pd{}{r}(r^2 \pd{\psi}{r}) $. Although looking promising, when I substitute $\psi=\frac{u(r)}{r}$ and do the differentiations, I do not end up with $ \d{^2{u}}{{r}^2}$ - and the last term would anyway be u/r instead of just u. Clearly I'm missing something?
Given $ -\frac{\bar{h}^2}{2M}\nabla^2\psi +V\psi=E\psi , V=V_0 \: for\: 0\le r<a, 0 $ outside
I easily rearranged this to $ \nabla^2\psi+k_1^2\psi=0 $
At this stage the text substitutes $u(r)=r\psi(r)$ and gets the radial wave equation $ \d{^2{u}}{{r}^2}+k_1^2u=0 $
1) Despite the tempting similarity, I can't put $\nabla^2= \pd{^2{}}{{r}^2}=\d{^2{}}{{r}^2} \:for\: \psi(r) $, I know I have to transform the eqtn to spherical cords.
Pls ignore next 2 points for a while, I found a separation of variables approach that I think is what I need.
2) Laplaces eqtn in spherical form is a 3 term eqtn in $ r, \theta, \phi $. If $\psi $ was independent of both angles, I could drop the last 2 terms; probably the book does something like this - I need some help on this please?
3) Then I would be left with $ \pd{}{r}(r^2 \pd{\psi}{r}) $. Although looking promising, when I substitute $\psi=\frac{u(r)}{r}$ and do the differentiations, I do not end up with $ \d{^2{u}}{{r}^2}$ - and the last term would anyway be u/r instead of just u. Clearly I'm missing something?
Last edited: