- #1
RamaWolf
- 95
- 2
This thread is concerned with rectangular triangle with one side ( = s) and hypothenuse
(t = 2 s + 1) given and we are looking for the remaining side (all sides having integer values)
d[itex]^{2}[/itex] = t[itex]^{2}[/itex] - s[itex]^{2}[/itex] = (2 s + 1)[itex]^{2}[/itex] - s[itex]^{2}[/itex], with d, s, t [itex]\in \mathbb{Z}[/itex]
Computational experiments show the first solutions to this problem as:
s = 0 | 8 | 120 | 1680 | 23408 | ...
t = 1 | 17 | 241 | 3361 | 46817 | ...
d = 1 | 15 | 209 | 2911 | 40545 | ...
Further mathematical treatment starts with:
Lemma: Let b[itex]_{0}[/itex] and b[itex]_{1}[/itex] be co-prime natural numbers and
b[itex]_{k}[/itex]:=4 b[itex]_{k-1}[/itex] - b[itex]_{k-2}[/itex]
then the pairs (b[itex]_{k},b_{k+1}[/itex]) are all co-prime
Euclidean Rule for Pythagorean Numbers:
Let (m,n) be co-prime natural numbers (m<n), then
h := n[itex]^{2}[/itex] + m[itex]^{2}[/itex]
e := 2 m n
d := n[itex]^{2}[/itex] - m[itex]^{2}[/itex]
form the hypothenuse, the even and the odd leg
of a primitive Pythagorean triangle (PPT)
Now we have from b = {0, 1, 4, 15, 56, 209, 241, ...}
(m.n) -h- -e- -d-
---------------------------------
(0,1) -1- -0- -1-
(1,4) -17- -8- -15-
(4,15) -241- -120- -209-
(15,56) -3361- -1680- -2911-
(56,209) -46827- -23408- -40545-
(...,...)
and we identify the PPT's generated from the b-sequence as solutions to our problem.
(t = 2 s + 1) given and we are looking for the remaining side (all sides having integer values)
d[itex]^{2}[/itex] = t[itex]^{2}[/itex] - s[itex]^{2}[/itex] = (2 s + 1)[itex]^{2}[/itex] - s[itex]^{2}[/itex], with d, s, t [itex]\in \mathbb{Z}[/itex]
Computational experiments show the first solutions to this problem as:
s = 0 | 8 | 120 | 1680 | 23408 | ...
t = 1 | 17 | 241 | 3361 | 46817 | ...
d = 1 | 15 | 209 | 2911 | 40545 | ...
Further mathematical treatment starts with:
Lemma: Let b[itex]_{0}[/itex] and b[itex]_{1}[/itex] be co-prime natural numbers and
b[itex]_{k}[/itex]:=4 b[itex]_{k-1}[/itex] - b[itex]_{k-2}[/itex]
then the pairs (b[itex]_{k},b_{k+1}[/itex]) are all co-prime
Euclidean Rule for Pythagorean Numbers:
Let (m,n) be co-prime natural numbers (m<n), then
h := n[itex]^{2}[/itex] + m[itex]^{2}[/itex]
e := 2 m n
d := n[itex]^{2}[/itex] - m[itex]^{2}[/itex]
form the hypothenuse, the even and the odd leg
of a primitive Pythagorean triangle (PPT)
Now we have from b = {0, 1, 4, 15, 56, 209, 241, ...}
(m.n) -h- -e- -d-
---------------------------------
(0,1) -1- -0- -1-
(1,4) -17- -8- -15-
(4,15) -241- -120- -209-
(15,56) -3361- -1680- -2911-
(56,209) -46827- -23408- -40545-
(...,...)
and we identify the PPT's generated from the b-sequence as solutions to our problem.