- #1
tracker890 Source h
- 90
- 11
- Homework Statement
- The solution provided seems to conflict with the momentum equation.
- Relevant Equations
- momentum equation
Q: Referring to the solution of this problem, why does the equation (eq) hold true?
$$
\frac{\partial}{\partial t}\int_{CV}^{}{u_{xyz}}\rho d\forall =\frac{\partial}{\partial t}\left( u_{xyz}\cdot M \right) =M\left( \frac{\partial}{\partial t}u_{xyz} \right) =M\left( \frac{\partial}{\partial t}\text{(}-\frac{V+U_0}{1+\frac{\rho A\left( V+U_0 \right)}{M}\cdot t}\text{)} \right) =0\cdots \text{(}eq\text{)}
$$
reference
$$
\frac{\partial}{\partial t}\int_{CV}^{}{u_{xyz}}\rho d\forall =\frac{\partial}{\partial t}\left( u_{xyz}\cdot M \right) =M\left( \frac{\partial}{\partial t}u_{xyz} \right) =M\left( \frac{\partial}{\partial t}\text{(}-\frac{V+U_0}{1+\frac{\rho A\left( V+U_0 \right)}{M}\cdot t}\text{)} \right) =0\cdots \text{(}eq\text{)}
$$
reference