- #1
kingwinner
- 1,270
- 0
Homework Statement
Q1) Assuming that |R|=|[0,1]| is true, how can we rigorously prove that |R2|=|[0,1] x [0,1]|? How to define the bijection? [Q1 is solved, please see Q2]
Q2) Prove that |[0,1] x [0,1]| ≤ |[0,1]|
Proof: Represent points in [0,1] x [0,1] as infinite decimals
x=0.a1a2a3...
y=0.b1b2b3...
Define f(x,y)=0.a1b1a2b2a3b3...
To avoid ambiguity, for any number that has two decimal representations, choose the one with a string of 9's.
f: [0,1] x [0,1] -> [0,1] is one-to-one, but not onto.
This one-to-one map proves that |[0,1] x [0,1]| ≤ |[0,1]|.
Now how can we formally prove that f is a one-to-one map (i.e. f(m)=f(n) => m=n)? All textbooks are avoiding this step, they just say it's obviously one-to-one, but this is exactly where I'm having trouble. How to prove formally?
Homework Equations
The Attempt at a Solution
As shown above.
Thanks a million! :)
Last edited: