- #1
- 13,371
- 3,552
Basically it's the diagram attached below. If one uses the Feynman rules for QCD, he gets the expression
[tex] \begin{array}{c} \left(\tilde{\Gamma}^{(2)}_{2,\mu\nu}\right)\left(p,-p\right)
= \frac{1}{2}\hat{g}^{2}M^{\varepsilon }f^{d}{}_{ac}f^{c}{}_{bd}\int \frac{d^{2\omega }q}{(2\pi)^{2\omega }}\left( \frac{-g^{\lambda \rho }q^{2}+\eta q^{\lambda }q^{\rho }}{\left( q^{2}+i\epsilon \right) ^{2}}\right) \left( \frac{-g^{\sigma \tau }\left( p+q\right) ^{2}+\eta \left( p+q\right) ^{\sigma }\left( p+q\right) ^{\tau }}{\left[ \left( p+q\right) ^{2}+i\epsilon \right] ^{2}}\right) \\
\times \left[ \left( q-p\right) _{\sigma }g_{\rho \mu }-\left( p+2q\right) _{\mu }g_{\sigma \rho }+\left( 2p+q\right) _{\rho }g_{\mu \sigma }\right] \left[ \left( 2p+q\right) _{\lambda }g_{\tau \nu }-\left( p+2q\right) _{\nu }g_{\lambda \tau }+\left( q-p\right) _{\tau }g_{\nu \lambda }\right] \end{array}
[/tex].
[tex] \begin{array}{c} \left(\tilde{\Gamma}^{(2)}_{2,\mu\nu}\right)\left(p,-p\right)
= \frac{1}{2}\hat{g}^{2}M^{\varepsilon }f^{d}{}_{ac}f^{c}{}_{bd}\int \frac{d^{2\omega }q}{(2\pi)^{2\omega }}\left( \frac{-g^{\lambda \rho }q^{2}+\eta q^{\lambda }q^{\rho }}{\left( q^{2}+i\epsilon \right) ^{2}}\right) \left( \frac{-g^{\sigma \tau }\left( p+q\right) ^{2}+\eta \left( p+q\right) ^{\sigma }\left( p+q\right) ^{\tau }}{\left[ \left( p+q\right) ^{2}+i\epsilon \right] ^{2}}\right) \\
\times \left[ \left( q-p\right) _{\sigma }g_{\rho \mu }-\left( p+2q\right) _{\mu }g_{\sigma \rho }+\left( 2p+q\right) _{\rho }g_{\mu \sigma }\right] \left[ \left( 2p+q\right) _{\lambda }g_{\tau \nu }-\left( p+2q\right) _{\nu }g_{\lambda \tau }+\left( q-p\right) _{\tau }g_{\nu \lambda }\right] \end{array}
[/tex].
Last edited: