- #1
Mishra
- 55
- 1
Hello,
I do not understand how to compute the infinitesimal variation of the field at fixed coordinates; under lorentz transformation . I am doing something wrong regarding the transformation of the ##x## coordinate.
I am looking for: ##\Delta_a=\phi_a'(x)-\phi_a(x)##, variation appearing in Noether's theorem ##j^{\mu}_{\nu}=\frac{\partial L}{\partial \partial\phi}\Delta_a - \epsilon^{\mu}_{\nu}L##
Lorentz transform:
(1): ##x^{\mu}\rightarrow x'^{\mu}=\Lambda^{\mu}_{\nu}x^{\nu}=x^{\mu}-\omega^{\mu}_{\nu}x^{\nu}## 4vector representation
(2): ##\phi_a(x)\rightarrow\phi_a'(x')=M^{b}_a\phi_b(x')## any field representation
From (2) we get:
##\phi_a'(x)=M^{b}_a\phi_b(\Lambda^{-1}x)##
Therefore:
##\Delta_a=\phi_a'(x)-\phi_a(x)## becomes:
(3): ##\Delta_a=M^{b}_a\phi_b(\Lambda^{-1}x)-\phi_a(x)##
Recalling the Lorentz generators:
(4): ##M=exp(-\frac{i}{2}\omega_{\mu\nu}J^{\mu\nu})=1-\frac{i}{2}\omega_{\mu\nu}J^{\mu\nu}##
I can now plug the generator into into (3):
##\Delta_a= (1-\frac{i}{2}\omega_{\mu\nu}J^{\mu\nu})^{b}_a\phi_b(\Lambda^{-1}x)-\phi_a(x)##
##\Delta_a= (1-\frac{i}{2}\omega_{\mu\nu}J^{\mu\nu})^{b}_a\phi_b(x^{\mu}+\omega^{\mu}_{\nu}x^{\nu})-\phi_a(x)##
Rearranging the terms I end up with:
##\Delta_a=\phi_a(x^{\mu}+\omega^{\mu}_{\nu}x^{\nu})-\phi_a(x) - (\frac{i}{2}\omega_{\mu\nu}J^{\mu\nu})^{b}_a\phi_b(x^{\mu}+\omega^{\mu}_{\nu}x^{\nu})##
The first two terms are a simple derivative so:
##\Delta_a=-\omega^{\mu}_{\nu}x^{\nu}\partial_{\mu}\phi_a(x) - (\frac{i}{2}\omega_{\mu\nu}J^{\mu\nu})^{b}_a\phi_b(x^{\mu}+\omega^{\mu}_{\nu}x^{\nu})##
And this is where I fail. According to pretty much every book I could find I should simply have:
##\Delta_a=-\omega^{\mu}_{\nu}x^{\nu}\partial_{\mu}\phi_a(x) - (\frac{i}{2}\omega_{\mu\nu}J^{\mu\nu})^{b}_a\phi_b(x)##
How do I get rid of this? I am probably doing something wrong at the very beginning where I define either the transformation or the infinitesimal change of the field but I don't understand why... I think I do not understand how the transformation carries the field/coordinates.
Thanks!
VM
I do not understand how to compute the infinitesimal variation of the field at fixed coordinates; under lorentz transformation . I am doing something wrong regarding the transformation of the ##x## coordinate.
I am looking for: ##\Delta_a=\phi_a'(x)-\phi_a(x)##, variation appearing in Noether's theorem ##j^{\mu}_{\nu}=\frac{\partial L}{\partial \partial\phi}\Delta_a - \epsilon^{\mu}_{\nu}L##
Lorentz transform:
(1): ##x^{\mu}\rightarrow x'^{\mu}=\Lambda^{\mu}_{\nu}x^{\nu}=x^{\mu}-\omega^{\mu}_{\nu}x^{\nu}## 4vector representation
(2): ##\phi_a(x)\rightarrow\phi_a'(x')=M^{b}_a\phi_b(x')## any field representation
From (2) we get:
##\phi_a'(x)=M^{b}_a\phi_b(\Lambda^{-1}x)##
Therefore:
##\Delta_a=\phi_a'(x)-\phi_a(x)## becomes:
(3): ##\Delta_a=M^{b}_a\phi_b(\Lambda^{-1}x)-\phi_a(x)##
Recalling the Lorentz generators:
(4): ##M=exp(-\frac{i}{2}\omega_{\mu\nu}J^{\mu\nu})=1-\frac{i}{2}\omega_{\mu\nu}J^{\mu\nu}##
I can now plug the generator into into (3):
##\Delta_a= (1-\frac{i}{2}\omega_{\mu\nu}J^{\mu\nu})^{b}_a\phi_b(\Lambda^{-1}x)-\phi_a(x)##
##\Delta_a= (1-\frac{i}{2}\omega_{\mu\nu}J^{\mu\nu})^{b}_a\phi_b(x^{\mu}+\omega^{\mu}_{\nu}x^{\nu})-\phi_a(x)##
Rearranging the terms I end up with:
##\Delta_a=\phi_a(x^{\mu}+\omega^{\mu}_{\nu}x^{\nu})-\phi_a(x) - (\frac{i}{2}\omega_{\mu\nu}J^{\mu\nu})^{b}_a\phi_b(x^{\mu}+\omega^{\mu}_{\nu}x^{\nu})##
The first two terms are a simple derivative so:
##\Delta_a=-\omega^{\mu}_{\nu}x^{\nu}\partial_{\mu}\phi_a(x) - (\frac{i}{2}\omega_{\mu\nu}J^{\mu\nu})^{b}_a\phi_b(x^{\mu}+\omega^{\mu}_{\nu}x^{\nu})##
And this is where I fail. According to pretty much every book I could find I should simply have:
##\Delta_a=-\omega^{\mu}_{\nu}x^{\nu}\partial_{\mu}\phi_a(x) - (\frac{i}{2}\omega_{\mu\nu}J^{\mu\nu})^{b}_a\phi_b(x)##
How do I get rid of this? I am probably doing something wrong at the very beginning where I define either the transformation or the infinitesimal change of the field but I don't understand why... I think I do not understand how the transformation carries the field/coordinates.
Thanks!
VM