- #1
rtwikia
- 13
- 0
$\alpha$ and $\beta$ are the roots of the equation $2{x}^{2}-5x+c=0$. If $4\alpha-2\beta=7$, find the value of $c$.
I did the following:
$\alpha+\beta=-\frac{-5}{2}=\frac{5}{2}$
$\alpha\beta=\frac{c}{2}$
$\frac{c}{2}=\frac{7+2\beta}{4}\cdot\frac{-7+4\alpha}{2}$
$$=\frac{7+2\beta}{4}\cdot\frac{-14+8\alpha}{4}$$
$8c=(7+2\beta)(-14+8\alpha)$
$$=(2\beta+7)(8\alpha-14)$$
$$=16\alpha\beta-28\beta+56\alpha-98$$
$4c=8\alpha\beta-14\beta+28\alpha-49$ which re-factorizes into $(4\alpha-7)(2\beta+7)$
I could not go any further. Can anyone help me
I did the following:
$\alpha+\beta=-\frac{-5}{2}=\frac{5}{2}$
$\alpha\beta=\frac{c}{2}$
$\frac{c}{2}=\frac{7+2\beta}{4}\cdot\frac{-7+4\alpha}{2}$
$$=\frac{7+2\beta}{4}\cdot\frac{-14+8\alpha}{4}$$
$8c=(7+2\beta)(-14+8\alpha)$
$$=(2\beta+7)(8\alpha-14)$$
$$=16\alpha\beta-28\beta+56\alpha-98$$
$4c=8\alpha\beta-14\beta+28\alpha-49$ which re-factorizes into $(4\alpha-7)(2\beta+7)$
I could not go any further. Can anyone help me