- #1
anemone
Gold Member
MHB
POTW Director
- 3,883
- 115
Here is this week's POTW:
-----
Let $P_1(x)=ax^2-bx-c,\,P_2(x)=bx^2-cx-a,\,P_3(x)=cx^2-ax-b$ be three quadratic polynomials where $a,\,b$ and $c$ are non-zero real numbers. Suppose there exists a real number $k$ such that $P_1(k)=P_2(k)=P_3(k)$, prove that $a=b=c$.
-----
-----
Let $P_1(x)=ax^2-bx-c,\,P_2(x)=bx^2-cx-a,\,P_3(x)=cx^2-ax-b$ be three quadratic polynomials where $a,\,b$ and $c$ are non-zero real numbers. Suppose there exists a real number $k$ such that $P_1(k)=P_2(k)=P_3(k)$, prove that $a=b=c$.
-----