- #1
Fernando Rios
- 96
- 10
- Homework Statement
- Show that if the point (a,b,c) lies on the hyperbolic paraboloid z=y^2-x^2, then the lines with parametric equations x=a+t, y=b+t, z=c+2(b-a)t and x=a+t, y=b-t, z=c-2(b+a)t both lie enterily on this paraboloid.
- Relevant Equations
- z=y^2-x^2
x=a+t, y=b+t, z=c+2(b-a)t and x=a+t, y=b-t, z=c-2(b+a)t
Substitute (a,b,c) into z=y^2-x^2:
c=b^2-a^2
Substitute the parametric equations of L1 into the equation of the hyperbolic paraboloid in order to find points of intersection:
z=y^2-x^2
c+2(b-a)t=(b+t)^2-(a+t)^2=b^2-a^2+(b-a)t
c=b^2-a^2
c=b^2-a^2
Substitute the parametric equations of L1 into the equation of the hyperbolic paraboloid in order to find points of intersection:
z=y^2-x^2
c+2(b-a)t=(b+t)^2-(a+t)^2=b^2-a^2+(b-a)t
c=b^2-a^2