Quality of an oscillating electron

  • #1
PragmaticYak
4
1
Homework Statement
This problem is 3-16b) from French, Vibrations and Waves.

According to classical electromagnetic theory an accelerated electron radiates energy at the rate

K = (Ke^2 a^2)/(c^3)

where K = 6 × 10^9 N m^2/C^2, e = electronic charge (C), a = instantaneous acceleration (m/s^2), and c = speed of light (m/s).

b) What is the Q of the oscillator?
Relevant Equations
It was found in part a) that in one cycle, the oscillator radiates

ΔE = (8Ke^2 π^4 ν^3 A^2)/(c^3)

away, where A is the amplitude of the oscillator and ν is its frequency, in Hz. Also,

Q = (ω_o)/(γ)
E(t) = E_o e^(-γt)
ω_o = 2πν
The oscillator's initial energy can be found by considering when all of its energy is potential energy.

Eo = (1/2)kA2 = (1/2)mω2A2 = (1/2)me(2πν)2A2 = 2meπ2ν2A2

where me is the mass of an electron. With this in mind, the energy dissipated after one cycle is given by

ΔE = E(0) - E(1/ν) = Eo - Eoe-γ/ν = Eo(1 - e-γ/ν)

Solving for γ, we see that

ΔE/Eo = 1 - e-γ/ν

1 - ΔE/Eo = e-γ/ν

-γ/ν = ln(1 - ΔE/Eo)

Assuming that ΔE/Eo is very small, we can make the very good approximation

-γ/ν = ln(1 - ΔE/Eo) ≈ -ΔE/Eo

Thus

γ = νΔE/Eo = ν * (8K2e2π4ν3A2)/(c3) * (1)/(2meπ2ν2A2) = (4Ke2π2ν2)/(mec3)

Calculating Q, finally,

Q = ωo/γ = 2πν/γ = 2πν * (mec3)/(4Ke2π2ν2) = (mec3)/(2πνKe2)

However, the answer in the back of the book says

Q = (mec3)/(4πνKe2)

I cannot figure out where the error in my work is.
 
Physics news on Phys.org
  • #2
I don't see any mistakes in your work. It looks to me like your result for ##Q## agrees with Feynman's result ##Q = \large \frac{3 \lambda mc^2}{4 \pi e^2}## given in formula (32.10) of Vol. I of his lectures.

Here it is important to note that Feynman uses ##e^2## to denote ##q^2/(4\pi \epsilon_0)##, where ##q## is the value of the charge in Coulombs. ##\lambda## is the wavelength of the radiation. French's constant ##K## is equal to ##1/(6 \pi \epsilon_0)## as you can see if you compare French's expression for the radiated power with the first formula given here.

Thus, starting with Feynman's expression for Q and replacing ##e^2## by ##e^2/(4 \pi \epsilon_0)##, replacing ##\lambda## by ##c/\nu##, and replacing ##\epsilon_0## by ##1/(6 \pi K)## you get your result. So, it appears that French's result is half of the correct result.
 
Last edited:
  • Like
Likes PragmaticYak
  • #3
Thank you!
 

Similar threads

Back
Top