- #1
Petar Mali
- 290
- 0
Relations for an ideal Fermi gas:
[tex]\frac{P}{k_BT}=\frac{1}{\lambda_D^3}f_{5/2}(\lambda)[/tex]
[tex]\frac{1}{\upsilon}=\frac{1}{\lambda_D^3}f_{3/2}(\lambda)[/tex]
But in some book books I find
[tex]\frac{P}{k_BT}=\frac{g}{\lambda_D^3}f_{5/2}(\lambda)[/tex]
[tex]\frac{1}{\upsilon}=\frac{g}{\lambda_D^3}f_{3/2}(\lambda)[/tex]
where [tex]g[/tex] is degeneration of spin I
guess.
[tex]g=2s+1[/tex]
Can you tell me something about this
[tex]\lambda_D=\sqrt{\frac{2 \pi\hbar^2}{mk_BT}}[/tex]
[tex]f_k(\lambda)=\sum^{\infty}_{n=1}(-1)^{n-1}\frac{\lambda^n}{n^k}[/tex]
[tex]\lambda=e^{\frac{\mu}{\theta}}[/tex] - fugacity
[tex]\frac{P}{k_BT}=\frac{1}{\lambda_D^3}f_{5/2}(\lambda)[/tex]
[tex]\frac{1}{\upsilon}=\frac{1}{\lambda_D^3}f_{3/2}(\lambda)[/tex]
But in some book books I find
[tex]\frac{P}{k_BT}=\frac{g}{\lambda_D^3}f_{5/2}(\lambda)[/tex]
[tex]\frac{1}{\upsilon}=\frac{g}{\lambda_D^3}f_{3/2}(\lambda)[/tex]
where [tex]g[/tex] is degeneration of spin I
guess.
[tex]g=2s+1[/tex]
Can you tell me something about this
[tex]\lambda_D=\sqrt{\frac{2 \pi\hbar^2}{mk_BT}}[/tex]
[tex]f_k(\lambda)=\sum^{\infty}_{n=1}(-1)^{n-1}\frac{\lambda^n}{n^k}[/tex]
[tex]\lambda=e^{\frac{\mu}{\theta}}[/tex] - fugacity