- #1
ttttrigg3r
- 49
- 0
Homework Statement
This is a problem straight from my homework.
Imagine that you have a box that emits quantons that have a definite but unknown spin state. If we run quantons from this box through an Stern Gerlach (z-axis) device, we find that 20 percent of the electrons come out the plus channel and 80 percent from the minus channel. If we run quantons from the same box through an Stern Gerlach (x-axis) device, we find that 50 percent of the electrons come out of each channel. If we run quantons from the box through an Stern Gerlach (y-axis) we find that 90 percent come out the plus channel and 10 percent out of the minus channel. Find a quantum state vector for quantons emerging from the box that is consistent with these data
Homework Equations
The outcome probability rule states: the probability that the quanton's state will collapse after going through the SG device is the "absolute square of the inner-product" of the original and the result's eigenvector.
The Attempt at a Solution
This is what I have so far:
The original spin state of the quanton is unknow, we call it |ψ>=[ψ1; ψ2]
where psi1 and 2 are imaginary numbers: ψ1=a+ib and ψ2=c+id
this is where I get stuck. i know that there is z, y, and x SG devices and this is the table of spin eigenvectors.
|+z>=[1;0]
|-z>=[0;1]
|+y>=[sqrt(1/2);isqrt(1/2)]
|-y>=[isqrt(1/2);sqrt(1/2)]
|+x>=[sqrt(1/2);sqrt(1/2)]
|-x>=[sqrt(1/2);-sqrt(1/2)]
Can someone help me set up the equations to solve this? I asked my professor and she told me that there are 4 equations. one each for z,y,x and one for the normalized condition.