- #1
Robben
- 166
- 2
Homework Statement
A particle of mass m in the one-dimensional harmonic oscillator is in a state for which a measurement of the energy yields the values ##\hbar\omega/2## or ##3\hbar\omega/2## each with a probability of one-hald. The average value of the momentum ##\langle p_x\rangle## at time ##t=0## is ##\sqrt{m\omega\hbar/2}##. What is this state and what is ##\langle p_x\rangle## at time ##t##?
Homework Equations
None
The Attempt at a Solution
The solution states that since ##|\psi\rangle## is the superposition of ##n=0## and ##n=1## then ##|\psi\rangle = c_1|0\rangle +c_2|1\rangle## but why is that? What information specifies the state of the particle?
It goes on by calculating $$|psi\rangle =
\frac{1}{\sqrt{2}}(|0\rangle+e^{i\phi}|1\rangle)$$ $$\langle p_x\rangle=-i\sqrt{m\omega\hbar}/2\langle\psi|(a-a^{\dagger})|\psi \rangle$$ $$=\frac{-i}{2}\sqrt{\frac{m\omega\hbar}{2}}(e^{i\phi}\langle0|a|1\rangle-e^{-i\phi}\langle1|a^{\dagger}|0\rangle)$$ but why does ##\langle0|a|1\rangle## and ##\langle1|a^{\dagger}|0\rangle## equal one?
Last edited: