I Quantum Mechanics vs Einstein: Light Btwn Black Holes, Double Slit Experiment

namelessuser
Messages
1
Reaction score
1
Quantum mechanics vs Einsteins theory of relativity:

How does light move between two black holes if we create a double slit experiment in front of the light? Do the light waves distribute themselves equally on the screen or does gravity distort light waves at the edges?

So just imagine doing a double slit experiment, but we have two black holes at the edges....
 
Physics news on Phys.org
namelessuser said:
Quantum mechanics vs Einsteins theory of relativity:

How does light move between two black holes if we create a double slit experiment in front of the light? Do the light waves distribute themselves equally on the screen or does gravity distort light waves at the edges?

So just imagine doing a double slit experiment, but we have two black holes at the edges....
There is no conflict between QM and GR in this particular example. Light is bent in the presence of gravity, including the extreme gravity of a black hole.
 
namelessuser said:
Quantum mechanics vs Einsteins theory of relativity:

How does light move between two black holes if we create a double slit experiment in front of the light? Do the light waves distribute themselves equally on the screen or does gravity distort light waves at the edges?

So just imagine doing a double slit experiment, but we have two black holes at the edges....
If you want a double slit experiment, you may need three miniature black holes.
 
namelessuser said:
Quantum mechanics vs Einsteins theory of relativity:

How does light move between two black holes if we create a double slit experiment in front of the light? Do the light waves distribute themselves equally on the screen or does gravity distort light waves at the edges?

So just imagine doing a double slit experiment, but we have two black holes at the edges....
Can you draw a picture of this? Where is the source of light, relative to the first black hole? Where is the screen, relative to the second black hole? You can draw it by your hand and take a photo by a smart phone.
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. Towards the end of the first lecture for the Qiskit Global Summer School 2025, Foundations of Quantum Mechanics, Olivia Lanes (Global Lead, Content and Education IBM) stated... Source: https://www.physicsforums.com/insights/quantum-entanglement-is-a-kinematic-fact-not-a-dynamical-effect/ by @RUTA
I am reading WHAT IS A QUANTUM FIELD THEORY?" A First Introduction for Mathematicians. The author states (2.4 Finite versus Continuous Models) that the use of continuity causes the infinities in QFT: 'Mathematicians are trained to think of physical space as R3. But our continuous model of physical space as R3 is of course an idealization, both at the scale of the very large and at the scale of the very small. This idealization has proved to be very powerful, but in the case of Quantum...
Thread 'Lesser Green's function'
The lesser Green's function is defined as: $$G^{<}(t,t')=i\langle C_{\nu}^{\dagger}(t')C_{\nu}(t)\rangle=i\bra{n}C_{\nu}^{\dagger}(t')C_{\nu}(t)\ket{n}$$ where ##\ket{n}## is the many particle ground state. $$G^{<}(t,t')=i\bra{n}e^{iHt'}C_{\nu}^{\dagger}(0)e^{-iHt'}e^{iHt}C_{\nu}(0)e^{-iHt}\ket{n}$$ First consider the case t <t' Define, $$\ket{\alpha}=e^{-iH(t'-t)}C_{\nu}(0)e^{-iHt}\ket{n}$$ $$\ket{\beta}=C_{\nu}(0)e^{-iHt'}\ket{n}$$ $$G^{<}(t,t')=i\bra{\beta}\ket{\alpha}$$ ##\ket{\alpha}##...
Back
Top