- #1
Jufa
- 101
- 15
- TL;DR Summary
- Problem quantifying the negativity of a 4-qubit GHZ state
When I computes the negativity (with the partial transpose) of the density matrix corresponding to the GHZ I obtain zero, no matter what is the partition I choose. I've read somewhere that this is because GHZ's distillable entanglement is zero, which I don't really understand because I haven't found a definition of this sort of entanglement.
I think that the reason that all the possible negativities give zero it is because the entanglement of the GHZ is solely when one considers the whole system (full 4-partite entanglement)
My question is (also if someone could explain what the distillable entanglement is): Is there a quantity I can compute on this GHZ state (and if possible on any 4-qubit state) that measures its amount of "full 4-partite entanglement"?
Thanks in advance.
I think that the reason that all the possible negativities give zero it is because the entanglement of the GHZ is solely when one considers the whole system (full 4-partite entanglement)
My question is (also if someone could explain what the distillable entanglement is): Is there a quantity I can compute on this GHZ state (and if possible on any 4-qubit state) that measures its amount of "full 4-partite entanglement"?
Thanks in advance.