- #1
darkfall13
- 33
- 0
Homework Statement
V(x) = [tex]\inf[/tex] if x [tex]\leq[/tex] 0
= -V if 0 [tex]<[/tex] x [tex]<[/tex] a
= 0 if x [tex]>[/tex] a
NOTE: E>V
Find the wave functions in each region and the stated phase shift.
Homework Equations
Schrodinger Eq.
Instructions note that wave functions are:
[tex]\Psi_I[/tex] = [tex]A\sin{kx}[/tex]
[tex]\Psi_{II}[/tex] = [tex]B\sin{k'x+\phi}[/tex]
where,
k = [tex]\sqrt{2m(V+E)}/\hbar[/tex]
k' = [tex]\sqrt{2mE}/\hbar[/tex]
Show [tex]2\phi = 2\left[\cot^{-1}\left(\frac{k}{k'}\cot\left({ka}\right)\right)-k'a\right][/tex]
The Attempt at a Solution
I can get Region I just fine (0:a well)
[tex]\frac{-\hbar^2}{2m} \frac{d^2 \Psi}{dx^2} - V \Psi = E \Psi [/tex]
[tex]-\frac{d^2 \Psi}{dx^2} = \left(E+V\right)\Psi\left(\frac{2m}{\hbar^2}[/tex]
let [tex]k = \frac{\sqrt{2m\left(V+E\right)}}{\hbar}[/tex]
[tex] \Psi_x\left(x\right) = A\sin{kx} [/tex]
Region II
[tex]\frac{-\hbar^2}{2m} \frac{d^2 \Psi}{dx^2} = E \Psi [/tex]
[tex]-\frac{d^2\Psi}{dx^2} = \frac{2mE}{\hbar^2}\Psi [/tex]
[tex] \Psi_{II}\left(x\right) = B\sin{k'x} [/tex]
where [tex]k' = sqrt{2mE}{\hbar}[/tex]
But my problem lies in the phase shift. How is it related to the wave functions and how can it be calculated?