- #1
Markus Kahn
- 112
- 14
Homework Statement
Let ##U_t = e^{-iHt/\hbar}## be the evolution operator associated with the Hamiltonian ##H##, and let ##P=\vert\phi\rangle\langle \phi\vert## be the projector on some normalized state vector ##\vert \phi\rangle##.
Show that
$$\underbrace{PU_{t/n}P\dots PU_{t/n}}_{n\text{ times}}P = \langle \phi\vert U_{t/n}\vert\phi\rangle ^n P$$
and that
$$\langle\phi\vert U_{t/n}\vert\phi\rangle ^n = e^{-i\langle H\rangle t/\hbar}(1+\mathcal{O}(t^2/n))$$
Homework Equations
All given above.
The Attempt at a Solution
For the first eq. I wrote out
$$\begin{align*}\langle \phi\vert U_{t/n}\vert\phi\rangle^n &= \langle \phi\vert U_{t/n}\underbrace{\vert\phi\rangle \langle\phi\vert}_{=P} U_{t/n}\vert\phi\rangle \dots \langle \phi\vert U_{t/n}\vert\phi\rangle\\
&= \langle \phi\vert U_{t/n} \underbrace{P\dots PU_{t/n}}_{n-1\text{ times}}\vert\phi\rangle .\end{align*}$$
I'm not sure how this is supposed to add up since the last ket in the last eq. is just not there in the expression that we want.
For the second equation we can expand
$$U_{t/n} = e^{-iHt/n\hbar} = 1 -\frac{it}{n\hbar} H+ \mathcal{O}(t^2/n^2).$$
The problem arises when I try to calculate the expectation value:
$$\begin{align*}\langle\phi\vert U_{t/n}\vert \phi\rangle &= \left\langle \phi\Bigg\vert 1 -\frac{it}{n\hbar} H+ \mathcal{O}(t^2/n^2)\Bigg\vert\phi\right\rangle\\
&=1-\frac{it}{n\hbar} \langle H\rangle+ \langle\mathcal{O}(t^2/n^2)\rangle ,\end{align*}$$
but this seems quite wrong. I'm not really sure where the error exactly happend...
Hope someone can help a bit.
Thanks