MHB Question 1 AQA AS Maths Pure Core 1, May 2011

  • Thread starter Thread starter CaptainBlack
  • Start date Start date
  • Tags Tags
    Aqa Core Pure
AI Thread Summary
The equation of line \(AB\) is given as \(7x + 3y = 13\), with a gradient of \(-\frac{7}{3}\). A line through point \(C(-1, 3)\) parallel to \(AB\) has the equation \(y = -\frac{7}{3}x + \frac{2}{3}\). The coordinates of point \(A\) are determined to be \((4, -5)\) using the midpoint formula with point \(C\). The intersection point \(B\) of line \(AB\) and the line \(3x + 2y = 12\) is found to be \((-2, 9)\). The discussion emphasizes the importance of checking answers by substituting values back into the original equations.
CaptainBlack
Messages
801
Reaction score
0
1. The line \(AB\) has equation \(7x+3y=13\).


(a) Find the gradient of \(AB\). (2 marks)


(b) The point \(C\) has coordinates \((-1,3)\).

(i) Find an equation of the line which passes through the point \(C\) and which is parallel to \(AB\). (2 marks)(ii) The point \( (1\frac{1}{2},-1)\) is the mid point of \(AC\). Find the coordinates of the point \(A\) (2 marks)


(c) The line \(AB\) intersects the line with equation \(3x+2y=12\) at the point \(B\). Find the coordinates of \(B\) (3 marks)
 
Mathematics news on Phys.org
Re: Question 1 AQA AS Maths Pure Core 1, May 2011 Solution

Answer:
(a) We rewrite the equation of the line in the form \(y=mx+c\), then \(m\) is the gradient:
\[3y=-7x+13 \\ y=-\;\frac{7}{3}x+\frac{13}{3}\],
so the gradient is \(-\frac{7}{3}\)


(b)(i) The line through \(C: (-1,3)\) has gradient \(-\frac{7}{3}\), and so is of the form: \( y=-\;\frac{7}{3}x+c\), and as it passes through \(C\) we have:\[3=-\;\frac{7}{3}\times (-1)+c\], so \(c=3-\frac{7}{3}=\frac{2}{3}\) and the required equation of the lone through \(C\) parallel to \(AB\) is:\[y=-\;\frac{7}{3}x+\frac{2}{3}\]. Or multipling through by \(3\):\[3y=-7x+2\]


(b)(ii) As \(M: (1\frac{1}{2},-1) \) is the mid-point of \(AC\) we have the coordinates of \(M\) are the average of the coordinates of \(A\) and \(C\), so if \(A: (a_1,a_2)\) we have:\[\begin{aligned} 3/2&=(a_1+(-1))/2 \\ (-1)&=(a_2+3)/2 \end{aligned}\]. Hence \(a_1=4\) and \(a_2=-5\), so \(A\) is the point \((4,-5)\)


(c) As the line \(AB\) intersects the line \(3x+2y=12\) at \(B\) we may substitute \(y\) from the equation for \(AB\) into this to get: \[3x+2\left(-\frac{7}{3}x+\frac{13}{3}\right)=12\]or \[\left( 3-\frac{14}{3}\right)x+\frac{26}{3}=12\]simplifying some more: \[\left( -\;\frac{5}{3}\right)x=\frac{10}{3}\] so \(x=-2\), and substituting back into either equation gives \(y=9\) so \(B\) is the point \((-2,9)\).

Note I have left out the checking of answers as you go along, it takes very little time to substitute values back into equations they are supposed to satisfy to confirm that they do indeed do so, etc.
 
Last edited:
Sorry for the necroposting...

1.b.i

"Point-slope form": $$y-y_1 = m(x-x_1)$$

I recommend this when they say "find **an** equation...", as there are infinitely many such equations (and some are easier to find than others!)

So $$y - 3 = \dfrac{-7}{3} (x - (-1))$$, or
$$ y -3= \dfrac{-7}{3} (x + 1)$$
 
Seemingly by some mathematical coincidence, a hexagon of sides 2,2,7,7, 11, and 11 can be inscribed in a circle of radius 7. The other day I saw a math problem on line, which they said came from a Polish Olympiad, where you compute the length x of the 3rd side which is the same as the radius, so that the sides of length 2,x, and 11 are inscribed on the arc of a semi-circle. The law of cosines applied twice gives the answer for x of exactly 7, but the arithmetic is so complex that the...
Thread 'Imaginary Pythagoras'
I posted this in the Lame Math thread, but it's got me thinking. Is there any validity to this? Or is it really just a mathematical trick? Naively, I see that i2 + plus 12 does equal zero2. But does this have a meaning? I know one can treat the imaginary number line as just another axis like the reals, but does that mean this does represent a triangle in the complex plane with a hypotenuse of length zero? Ibix offered a rendering of the diagram using what I assume is matrix* notation...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
Back
Top