MHB Question 2, AQA AS Maths Pure Core 1, May 2011

  • Thread starter Thread starter CaptainBlack
  • Start date Start date
  • Tags Tags
    Aqa Core Pure
AI Thread Summary
To express \(\sqrt{48}\) in the form \(k\sqrt{3}\), it simplifies to \(4\sqrt{3}\) since \(48=16 \times 3\). The expression \(\frac{\sqrt{48}+2\sqrt{27}}{\sqrt{12}}\) simplifies to the integer 5 after combining terms. For the expression \(\frac{1-5\sqrt{5}}{3+\sqrt{5}}\), multiplying by the conjugate results in \(7-4\sqrt{5}\). The calculations demonstrate the application of simplification techniques in algebra.
CaptainBlack
Messages
801
Reaction score
0
(a) (i) Express \(\sqrt{48}\) in the form \(k\sqrt{3}\), where \(k\) is an integer. (1 mark)

...(ii) Simplify \(\displaystyle \frac{\sqrt{48}+2\sqrt{27}}{\sqrt{12}}\) giving your answer as an integer. (3 marks)

(b) Express \(\displaystyle \frac{1-5\sqrt{5}}{3+\sqrt{5}}\) in the form \(m+n\sqrt{5}\), where m and n are integers. (4 marks)

CB
 
Mathematics news on Phys.org
Answer

(a) (i)
Since \(48=16 \times 3\) we have: \(\sqrt{48}=\sqrt{16 \times 3}=4\sqrt{3}\).

(a) (ii) \[\frac{\sqrt{48}+2\sqrt{27}}{\sqrt{12}}=\frac{4 \sqrt{3}+2 \times 3 \sqrt{3}}{2 \sqrt{3}}=\frac{4+6}{2}=5\]

(b) We multiply top and bottom by \( 3-\sqrt{5} \):

\[\frac{1-5\sqrt{5}}{3+\sqrt{5}}=\frac{(1-5\sqrt{5})(3-\sqrt{5})}{(3+\sqrt{5})(3-\sqrt{5})}=\frac{3-15 \sqrt{5}- \sqrt{5}+5( \sqrt{5})^2}{9-5}=\frac{28-16\sqrt{5}}{4}=7-4\sqrt{5}\]

CB
 
Seemingly by some mathematical coincidence, a hexagon of sides 2,2,7,7, 11, and 11 can be inscribed in a circle of radius 7. The other day I saw a math problem on line, which they said came from a Polish Olympiad, where you compute the length x of the 3rd side which is the same as the radius, so that the sides of length 2,x, and 11 are inscribed on the arc of a semi-circle. The law of cosines applied twice gives the answer for x of exactly 7, but the arithmetic is so complex that the...
Back
Top