- #1
cbarker1
Gold Member
MHB
- 349
- 23
Dear Everyone,
I have trouble writing the conclusion of the proof.
29. The square of every odd integer is one more than an integral multiple of 4.
Work:
Let $n\in\Bbb{Z}$
If n is odd, then $n^2=1+4k$ for some $k\in\Bbb{Z}$.
Examples
Let n=3. Then k=2.
Let n=5. Then k=6.
Let n=21. Then k=110.
Proof:
Suppose n is odd. Then $n=1+4l$ for some $l\in\Bbb{Z}$.
Then, $(2l+1)^2=1+4k$
$4l^2+4l+1=1+4k$
$4(l^2+l)+1=1+4k$
Since $4(l^2+l)\in\Bbb{Z}$. Then...
Thanks for the Help,
CBarker1
I have trouble writing the conclusion of the proof.
29. The square of every odd integer is one more than an integral multiple of 4.
Work:
Let $n\in\Bbb{Z}$
If n is odd, then $n^2=1+4k$ for some $k\in\Bbb{Z}$.
Examples
Let n=3. Then k=2.
Let n=5. Then k=6.
Let n=21. Then k=110.
Proof:
Suppose n is odd. Then $n=1+4l$ for some $l\in\Bbb{Z}$.
Then, $(2l+1)^2=1+4k$
$4l^2+4l+1=1+4k$
$4(l^2+l)+1=1+4k$
Since $4(l^2+l)\in\Bbb{Z}$. Then...
Thanks for the Help,
CBarker1