MHB Question 29- How to conclude the following proof.

  • Thread starter Thread starter cbarker1
  • Start date Start date
  • Tags Tags
    Proof
AI Thread Summary
The discussion focuses on concluding a proof that the square of every odd integer is one more than an integral multiple of 4. Participants clarify that if n is odd, it can be expressed as n = 2l + 1, leading to the equation n^2 = 4l^2 + 4l + 1. This can be rewritten as n^2 = 4k + 1, where k = l^2 + l, confirming the original statement. There is a correction regarding the form of n, emphasizing that it should be n = 2l + 1 rather than n = 1 + 4l. The proof is validated through this algebraic manipulation, establishing the desired conclusion.
cbarker1
Gold Member
MHB
Messages
345
Reaction score
23
Dear Everyone,
I have trouble writing the conclusion of the proof.
29. The square of every odd integer is one more than an integral multiple of 4.
Work:
Let $n\in\Bbb{Z}$
If n is odd, then $n^2=1+4k$ for some $k\in\Bbb{Z}$.

Examples
Let n=3. Then k=2.
Let n=5. Then k=6.
Let n=21. Then k=110.

Proof:
Suppose n is odd. Then $n=1+4l$ for some $l\in\Bbb{Z}$.
Then, $(2l+1)^2=1+4k$
$4l^2+4l+1=1+4k$
$4(l^2+l)+1=1+4k$
Since $4(l^2+l)\in\Bbb{Z}$. Then...

Thanks for the Help,
CBarker1
 
Mathematics news on Phys.org
If $n$ is an odd integer then it is of the form $2k-1$. Squaring, we find $(2k-1)^2=4k^2-4k+1=4(k^2-k)+1$ hence $n^2$ is one more than an integral multiple of $4$.
 
Cbarker1 said:
Dear Everyone,
I have trouble writing the conclusion of the proof.
29. The square of every odd integer is one more than an integral multiple of 4.
Work:
Let $n\in\Bbb{Z}$
If n is odd, then $n^2=1+4k$ for some $k\in\Bbb{Z}$.

Examples
Let n=3. Then k=2.
Let n=5. Then k=6.
Let n=21. Then k=110.

Proof:
Suppose n is odd. Then $n=1+4l$ for some $l\in\Bbb{Z}$.
No. This is not true for n= 3 or 7 or 11, etc. What is true that $n= 1+ 2l$.

Then, $(2l+1)^2=1+4k$
Okay, so the "4" before was a typo. Now, this is what you want to prove.

$4l^2+4l+1=1+4k$
$4(l^2+l)+1=1+4k$
Since $4(l^2+l)\in\Bbb{Z}$. Then...

Thanks for the Help,
CBarker1
Not quite a valid proof because in stating "$(2l+ 1)^2= 4k+ 1$" you are assuming what you want to prove.

Instead, starting with n is odd, so $n= 2l+ 1$, we have $n^2= (2l+ 1)^2= 4l^2+ 4l+ 1= 4(l^2+ l)+ 1= 4k+ 1$ where $k= l^2+ l$.
 
Seemingly by some mathematical coincidence, a hexagon of sides 2,2,7,7, 11, and 11 can be inscribed in a circle of radius 7. The other day I saw a math problem on line, which they said came from a Polish Olympiad, where you compute the length x of the 3rd side which is the same as the radius, so that the sides of length 2,x, and 11 are inscribed on the arc of a semi-circle. The law of cosines applied twice gives the answer for x of exactly 7, but the arithmetic is so complex that the...
Is it possible to arrange six pencils such that each one touches the other five? If so, how? This is an adaption of a Martin Gardner puzzle only I changed it from cigarettes to pencils and left out the clues because PF folks don’t need clues. From the book “My Best Mathematical and Logic Puzzles”. Dover, 1994.
Back
Top