- #1
Peter_Newman
- 155
- 11
Hello,
I would like to reproduce the following equation, but I don't quite understand how to do the transformation:
$$ \sum_{i=1}^k \left( \frac{\langle y , x_i^* \rangle}{\sqrt{\langle x_i^*, x_i^* \rangle}} \right)^2 = \langle y, y \rangle$$
Where ##x_1^*,...,x_k^*##, are orthogonalized Gram-Schmidt vectors of ##x_1,...,x_k \in \Lambda## and ##y \in span(x_1^*,...,x_k^*) = span(x_1,...,x_k)##.
I would be very grateful for any helpful hints!
I would like to reproduce the following equation, but I don't quite understand how to do the transformation:
$$ \sum_{i=1}^k \left( \frac{\langle y , x_i^* \rangle}{\sqrt{\langle x_i^*, x_i^* \rangle}} \right)^2 = \langle y, y \rangle$$
Where ##x_1^*,...,x_k^*##, are orthogonalized Gram-Schmidt vectors of ##x_1,...,x_k \in \Lambda## and ##y \in span(x_1^*,...,x_k^*) = span(x_1,...,x_k)##.
I would be very grateful for any helpful hints!
Last edited: