- #1
psie
- 269
- 32
- TL;DR Summary
- I am reading a proof of Jensen's inequality. I am getting stuck on an "elementary property" of convex functions.
I am reading a proof of Jensen's inequality. The proof goes like this.
The definition of convex I'm using is that $$\varphi(tx+(1-t)y)\leq t\varphi(x)+(1-t)\varphi(y)$$ holds for all ##x,y\in\mathbb R## and all ##t\in[0,1]##.
I do not know much about convex functions, but why does (1) hold?Theorem 4.3: Let ##(\Omega, \mathcal A,\mu)## be a probability space and let ##\varphi:\mathbb R\to\mathbb R_+## be a convex function. Then for every ##f\in L^1(\Omega, \mathcal A,\mu)##, $$\int_\Omega \varphi\circ f\, d\mu\geq\varphi\left(\int_\Omega f\, d\mu\right).$$ Proof: Set $$\mathcal E_\varphi=\{(a,b)\in\mathbb R^2:\forall x\in\mathbb R,\varphi(x)\geq ax+b\}.$$ Then by elementary properties of convex functions, $$\varphi \left(x\right)=\sup_{\left(a{,}b\right)\in \mathcal E_{\varphi }}\left(ax+b\right).\tag1$$ ... ... ...
The definition of convex I'm using is that $$\varphi(tx+(1-t)y)\leq t\varphi(x)+(1-t)\varphi(y)$$ holds for all ##x,y\in\mathbb R## and all ##t\in[0,1]##.