- #1
flyingpig
- 2,579
- 1
Homework Statement
Prove that for all integers [tex]n \geq 1[/tex], one has[tex]1 + 2 + ... + n = \frac{n(n+1)}{2}[/tex]
(1) S(1) = 1, true
(2) Let n = k + 1
[tex]1 + 2 + ... + k + (k + 1) = \frac{(k+`1)(k + 2)}{2}[/tex]
The Attempt at a Solution
Why is the last series
[tex]1 + 2 + ... + k + (k +1)[/tex] instead of [tex]1 + 2 +...+ (k + 1)[/tex]?