- #1
kelvin490
Gold Member
- 228
- 3
I am trying to follow the derivation of lens maker's formula from the textbook "University Physics", p.1133 (https://books.google.com.hk/books?id=nQZyAgAAQBAJ&pg=PA1133#v=onepage&q&f=false )
I can understand the first equation because it is just the object–image relationship for spherical refracting surface. But for the second equation, why the left hand side is nb/s2+nc/s'2 instead of nc/s2+nb/s'2? s2 is the first image's distance and it is on the nc side. In addition, on the right hand side why it is nc-nb on the numerator instead of nb-nc? If we follow strictly the formula for spherical refracting surface, the nb should be the lens side and nc is the air side.
A more fundamental question is, why this kind of superposition principle can be applied? I mean why the lens can be expressed as two lens added together? In many books they directly apply the object–image relationship for spherical refracting surface twice and added together. But this formula is only for single spherical surface (e.g. one side is air only and the other side is water only). If it is a lens it is air on both sides but lens in the middle. Why the solution for single spherical surface can be superposed like this?
I can understand the first equation because it is just the object–image relationship for spherical refracting surface. But for the second equation, why the left hand side is nb/s2+nc/s'2 instead of nc/s2+nb/s'2? s2 is the first image's distance and it is on the nc side. In addition, on the right hand side why it is nc-nb on the numerator instead of nb-nc? If we follow strictly the formula for spherical refracting surface, the nb should be the lens side and nc is the air side.
A more fundamental question is, why this kind of superposition principle can be applied? I mean why the lens can be expressed as two lens added together? In many books they directly apply the object–image relationship for spherical refracting surface twice and added together. But this formula is only for single spherical surface (e.g. one side is air only and the other side is water only). If it is a lens it is air on both sides but lens in the middle. Why the solution for single spherical surface can be superposed like this?
Last edited by a moderator: