Question about perturbation theory

  • #1
Malamala
306
27
Hello! I have a situation where I have time dependent Hamiltonian, ##H_0(t)## which I can solve for exactly and thus get ##\psi_0## as its eigenfunction (given the initial conditions). Now, on top of this, I add a time independent Hamiltonian, ##H_1## much smaller than ##H_0##. How can I get the corrections to the wavefunction ##\psi_0## as a function of time, due to ##H_1##?
 
Physics news on Phys.org
  • #2
I believe you will need to be explicit here. What are the two Hamiltonians and what does the solution look like?
 
  • #3
hutchphd said:
I believe you will need to be explicit here. What are the two Hamiltonians and what does the solution look like?
My Hamiltonian, ##H_0(t)## is a large matrix (in principle I can truncate it, so for now let's say it's 10 x 10). I can solve the TDSE exactly using numerical methods and get the wavefunction ##\psi_0(t)##. I don't have an explicit analytical form, just 10 numbers as a function of time. What I want to know, is the probability of the system to be in a given level as a function of time (and I can easily extract that by squaring the number associated to that level out of the 10 calculated).

In principle, I can easily solve the TDSE for ##H_0(t) + H_1## and get the probability for the new system. However, ##H_1## is much much smaller than ##H_0## (it depends on a given parameter, call it ##\alpha##, which is much smaller than anything else in the problem). If I would solve the TDSE for ##H_0(t) + H_1## as a whole, it would be hard to see the effect of ##\alpha## on the probability I am interested in. So what I want is to somehow treat ##H_1## analytically (in some sort of perturbation theory), on top of the numerical solution obtained from ##H_0##, such that I have a better understanding of the physical effect ##\alpha## has on my system.

Basically, I don't want to know that the probability changed, let's say, from ##0.25## to ##0.250001##, but I want to have something like ##0.25 + f(\alpha,t)##.
 

Similar threads

Replies
14
Views
2K
Replies
3
Views
1K
Replies
3
Views
934
Replies
3
Views
533
Replies
6
Views
1K
Replies
13
Views
2K
Back
Top