- #1
off-diagonal
- 30
- 0
Hi, everyone
I'm now reading A Relativist's Toolkit by Eric Poisson.
In chapter 3, he say something about stationary and static spacetime.
For static spacetime, it's just like stationary (admits timelike Killing vector [itex] t^{\alpha} [/itex]) with addition that metric should be invariant under time reversal [itex] t \rightarrow -t [/itex]. Which implies in some specific coordinate [itex] g_{t\mu} = 0 [/itex].
He also say that, this also implies that [itex] t_{\alpha} = g_{tt}\partial_{\alpha}t [/itex] and he concludes that "a spacetime is static if the timelike Killing vector field is hypersurface orthogonal".
I'd like to ask about these two implications. I have no idea how these two become relevant with static spacetime. Because, as far as I know, hypersurface orthogonal is the congruence of geodesics which have no rotating part.
I'm now reading A Relativist's Toolkit by Eric Poisson.
In chapter 3, he say something about stationary and static spacetime.
For static spacetime, it's just like stationary (admits timelike Killing vector [itex] t^{\alpha} [/itex]) with addition that metric should be invariant under time reversal [itex] t \rightarrow -t [/itex]. Which implies in some specific coordinate [itex] g_{t\mu} = 0 [/itex].
He also say that, this also implies that [itex] t_{\alpha} = g_{tt}\partial_{\alpha}t [/itex] and he concludes that "a spacetime is static if the timelike Killing vector field is hypersurface orthogonal".
I'd like to ask about these two implications. I have no idea how these two become relevant with static spacetime. Because, as far as I know, hypersurface orthogonal is the congruence of geodesics which have no rotating part.