I Question about the general solution to Hooke's law

  • I
  • Thread starter Thread starter dainceptionman_02
  • Start date Start date
  • Tags Tags
    Differential Law
dainceptionman_02
Messages
23
Reaction score
6
ok, so usually one of the first equations in Diff Eq is F = -kx, which is the second order differential equation mx'' = -kx, where they give you the only general solution in the universe as Acoswt + Bsinwt. I was wondering, why can't you just separate the equation and get m∫x''/x = -∫kt'' which should be m(xlnx - x) = -kt^2/2 + C ?
 
Physics news on Phys.org
dainceptionman_02 said:
ok, so usually one of the first equations in Diff Eq is F = -kx, which is the second order differential equation mx'' = -kx, where they give you the only general solution in the universe as Acoswt + Bsinwt. I was wondering, why can't you just separate the equation and get m∫x''/x = -∫kt'' which should be m(xlnx - x) = -kt^2/2 + C ?
That does not solve the differential equation: ##\displaystyle \quad m \ddot{x} = -kx \ \ .##

What do you even mean by m∫x''/x = -∫kt'' ?

Your solution seems to have interpreted this as

##\displaystyle \quad \quad m \int \left( \int \frac 1 x dx \right) dx = -k \int \left( \int dt \right) dt \ \ ,##

which is so very wrong.
 
Last edited:
If you plug your solution back into the original equation, it doesn't satisfy it.
 
  • Like
Likes dainceptionman_02
SammyS said:
That does not solve the differential equation: ##\displaystyle \quad m \ddot{x} = -kx \ \ .##

What do you even mean by m∫x''/x = -∫kt'' ?

Your solution seems to have interpreted this as ##\displaystyle
m \int \left( \int \frac 1 x dx \right) dx = -k \int \left( \int dt \right) dt \ \ ,## which is so very wrong.
I'm getting dizzy... o0)
 
There is the following linear Volterra equation of the second kind $$ y(x)+\int_{0}^{x} K(x-s) y(s)\,{\rm d}s = 1 $$ with kernel $$ K(x-s) = 1 - 4 \sum_{n=1}^{\infty} \dfrac{1}{\lambda_n^2} e^{-\beta \lambda_n^2 (x-s)} $$ where $y(0)=1$, $\beta>0$ and $\lambda_n$ is the $n$-th positive root of the equation $J_0(x)=0$ (here $n$ is a natural number that numbers these positive roots in the order of increasing their values), $J_0(x)$ is the Bessel function of the first kind of zero order. I...
Are there any good visualization tutorials, written or video, that show graphically how separation of variables works? I particularly have the time-independent Schrodinger Equation in mind. There are hundreds of demonstrations out there which essentially distill to copies of one another. However I am trying to visualize in my mind how this process looks graphically - for example plotting t on one axis and x on the other for f(x,t). I have seen other good visual representations of...
Back
Top