- #1
Airton Rampim
- 6
- 1
I have a question about this note: https://ocw.mit.edu/courses/physics...i-spring-2018/lecture-notes/MIT8_06S18ch2.pdf
I don't understand the expression (2.2.15). The complete relation would be
$$ \pi_i \pi_j = \frac{1}{2}\left(\left[\pi_i, \pi_j\right] + \left\{\pi_i, \pi_j\right\}\right), $$
where
$$ \vec{\pi} = \vec{p} - \frac{q}{c}\vec{A} $$
in gaussian unit. How can I prove that {πi, πj} = 0?
I don't understand the expression (2.2.15). The complete relation would be
$$ \pi_i \pi_j = \frac{1}{2}\left(\left[\pi_i, \pi_j\right] + \left\{\pi_i, \pi_j\right\}\right), $$
where
$$ \vec{\pi} = \vec{p} - \frac{q}{c}\vec{A} $$
in gaussian unit. How can I prove that {πi, πj} = 0?