A Question about the Poincaré conjecture

AI Thread Summary
Perelman’s proof of the Poincaré conjecture does not imply that the universe is the surface of a 3-sphere. The conjecture applies to closed simply connected 3-manifolds, which are compact and without boundary, while the universe may not be a closed manifold. Additionally, while the universe appears locally simply connected, this does not guarantee that it is globally simply connected. There are many simply connected 3-manifolds that do not conform to the 3-sphere structure. Thus, the relationship between the conjecture and the universe's topology is not straightforward.
donglepuss
Messages
17
Reaction score
4
TL;DR Summary
Does Perelman’s proof of the Poincaré conjecture imply that the universe is the surface of a 3 sphere?
Does Perelman’s proof of the Poincaré conjecture imply that the universe is the surface of a 3 sphere?
 
Mathematics news on Phys.org
donglepuss said:
TL;DR Summary: Does Perelman’s proof of the Poincaré conjecture imply that the universe is the surface of a 3 sphere?

Does Perelman’s proof of the Poincaré conjecture imply that the universe is the surface of a 3 sphere?
No.
 
  • Like
Likes Office_Shredder
How can a methematical proof tell us anything about the physical universe?
 
  • Like
Likes Hornbein and dextercioby
You haven't provided your reasoning for why you would be curious about this, so I'm left to assume that it's because from our local observations the universe appears to be a simply connected 3-manifold. There are two main reasons this doesn't imply the universe is the 3-sphere:

1) The Poincare conjecture takes as its premise closed simply connected 3-manifolds. These are compact manifolds without boundary. There are an abundance of simply connected 3-manifolds that aren't homeomorphic to the 3-sphere, but they are also non-compact (3-dimensional Euclidean space) or have non-empty boundary (the 3-ball). It is possible that the universe is not a closed manifold.

2) Our observations imply the universe is locally simply connected (i.e. simply connected within some neighborhood of a point). Every manifold is locally simply connected because every manifold is locally Euclidean. However, not every manifold is simply connected.

Hope this helped.
 
  • Like
Likes dextercioby and PeroK
Thread 'Video on imaginary numbers and some queries'
Hi, I was watching the following video. I found some points confusing. Could you please help me to understand the gaps? Thanks, in advance! Question 1: Around 4:22, the video says the following. So for those mathematicians, negative numbers didn't exist. You could subtract, that is find the difference between two positive quantities, but you couldn't have a negative answer or negative coefficients. Mathematicians were so averse to negative numbers that there was no single quadratic...
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Thread 'Unit Circle Double Angle Derivations'
Here I made a terrible mistake of assuming this to be an equilateral triangle and set 2sinx=1 => x=pi/6. Although this did derive the double angle formulas it also led into a terrible mess trying to find all the combinations of sides. I must have been tired and just assumed 6x=180 and 2sinx=1. By that time, I was so mindset that I nearly scolded a person for even saying 90-x. I wonder if this is a case of biased observation that seeks to dis credit me like Jesus of Nazareth since in reality...
Back
Top