- #1
PRB147
- 128
- 0
- TL;DR Summary
- I cannot derive Weinberg book QFT volume 1, (5.1.13), please help.
According to (5.1.6)
$$U_0(\Lambda,a)\psi_\ell^+(x)U^{-1}_0(\Lambda,a)=\sum\limits_{\ell \bar{\ell}}D_{ \ell \bar{\ell} }(\Lambda^{-1})\psi^+_{\bar{\ell}}(\Lambda x+a).$$ (5.1.6)
According to definition 5.1.4:
$$\psi^+_{\bar{\ell}}(\Lambda x+a)=\sum\limits_{\sigma n}\int d^3{\bf p
} u_\ell(\Lambda x+a;{\bf{p}},\sigma,n)a({\bf{p}},\sigma,n)$$
If we change the integral variable $${\bf p}\rightarrow \Lambda {\bf p}$$ and using Lorentz invariant $$d^3{\bf p}={p_0}{\frac{d^3(\Lambda {\bf p})}{(\Lambda p)^0}}$$, then,
$$\psi^+_{\bar{\ell}}(\Lambda x+a)=\sum\limits_{\sigma n}\int d^3(\Lambda {\bf p}) \left(\frac{p_0}{(\Lambda
p)^0}\right)u_\ell(\Lambda x+a;\Lambda{\bf{p}},\sigma,n)a(\Lambda{\bf{p}},\sigma,n)$$
If the above relation is correct, then I cannot derive equation (5.1.13).
Because of the extra factor below $$\left(\frac{p_0}{(\Lambda
p)^0}\right)$$.
It is this factor that made me perplexed, this extra factor make my derivation be different from (5.1.13), my result is $$\sqrt{\left(\frac{(\Lambda
p)^0}{p_0}\right)}$$ instead of $$\sqrt{\left(\frac{p_0}{(\Lambda
p)^0}\right)} \textrm{in book (5.1.13).}$$
$$U_0(\Lambda,a)\psi_\ell^+(x)U^{-1}_0(\Lambda,a)=\sum\limits_{\ell \bar{\ell}}D_{ \ell \bar{\ell} }(\Lambda^{-1})\psi^+_{\bar{\ell}}(\Lambda x+a).$$ (5.1.6)
According to definition 5.1.4:
$$\psi^+_{\bar{\ell}}(\Lambda x+a)=\sum\limits_{\sigma n}\int d^3{\bf p
} u_\ell(\Lambda x+a;{\bf{p}},\sigma,n)a({\bf{p}},\sigma,n)$$
If we change the integral variable $${\bf p}\rightarrow \Lambda {\bf p}$$ and using Lorentz invariant $$d^3{\bf p}={p_0}{\frac{d^3(\Lambda {\bf p})}{(\Lambda p)^0}}$$, then,
$$\psi^+_{\bar{\ell}}(\Lambda x+a)=\sum\limits_{\sigma n}\int d^3(\Lambda {\bf p}) \left(\frac{p_0}{(\Lambda
p)^0}\right)u_\ell(\Lambda x+a;\Lambda{\bf{p}},\sigma,n)a(\Lambda{\bf{p}},\sigma,n)$$
If the above relation is correct, then I cannot derive equation (5.1.13).
Because of the extra factor below $$\left(\frac{p_0}{(\Lambda
p)^0}\right)$$.
It is this factor that made me perplexed, this extra factor make my derivation be different from (5.1.13), my result is $$\sqrt{\left(\frac{(\Lambda
p)^0}{p_0}\right)}$$ instead of $$\sqrt{\left(\frac{p_0}{(\Lambda
p)^0}\right)} \textrm{in book (5.1.13).}$$
Last edited: