MHB Question from Kamal about Gaussian Elimination via email

AI Thread Summary
Kamal struggled with a textbook problem requiring Gaussian elimination to solve a system of equations. He expected the value of z to be 2 but consistently obtained larger numbers. The correct solution, derived through Gaussian elimination, shows that z equals -49, y equals -124, and x equals -14. The calculations involved setting up an augmented matrix and performing row operations to eliminate variables systematically. The thread concluded with the correct solution confirmed through substitution into the original equations.
Prove It
Gold Member
MHB
Messages
1,434
Reaction score
20
HI Sir,
I was having a bit of trouble with a question from the textbook. I have tried it multiple times with different methods and keep getting a different answer. The question wants us to solve it using Gaussian elimination.

2x+y−3z=−5
x − y + 2z = 12
7x − 2y + 3z = 3

The answer for Z is meant to be 2 but i keep getting bigger numbers for Z.

Thanks, Kamal

I'm not sure where you're getting the idea that z = 2, as this is not correct.

I'm assuming this is to be done without pivoting...

Set up your augmented matrix:

$\displaystyle \begin{align*} \left[ \begin{matrix} 2 & \phantom{-}1 & -3 & -5 \\ 1 & -1 & \phantom{-}2 & 12 \\ 7 & -2 & \phantom{-} 3 & \phantom{-}3 \end{matrix} \right] \end{align*}$

As we have to use Gaussian Elimination, we will use multiples of Row 1 to eliminate the terms under the main diagonal in the first column. So apply Row 2 - 1/2 Row 1 to Row 2 and Row 3 - 7/2 Row 1 to Row 3.

$\displaystyle \begin{align*} \left[ \begin{matrix} 2 & 1 & -3 & -5 \\ 1 - 1 & -1 - \frac{1}{2} & 2 - \left( -\frac{3}{2} \right) & 12 - \left( -\frac{5}{2} \right) \\ 7 - 7 & -2 - \frac{7}{2} & 3 - \left( -\frac{21}{2} \right) & 3 - \left( -\frac{35}{2} \right) \end{matrix} \right] &= \left[ \begin{matrix} 2 & \phantom{-}1 & -3 & -5 \\ 0 & -\frac{3}{2} & \phantom{-}\frac{7}{2} & \phantom{-}\frac{29}{2} \\ 0 & -\frac{11}{2} & \phantom{-}\frac{27}{2} & \phantom{-}\frac{41}{2} \end{matrix} \right] \end{align*}$

Now we have to use multiples of Row 2 to eliminate the term under the main diagonal in the second column. So we will have to apply Row 3 - 11/3 Row 2 to Row 3.

$\displaystyle \begin{align*} \left[ \begin{matrix} 2 & \phantom{-}1 & -3 & -5 \\ 0 & -\frac{3}{2} & \phantom{-}\frac{7}{2} & \phantom{-}\frac{29}{2} \\ 0 + 0 & -\frac{11}{2} - \left( -\frac{11}{2} \right) & \frac{27}{2} - \frac{77}{6} & \frac{41}{2} - \frac{319}{6} \end{matrix} \right] &= \left[ \begin{matrix} 2 & \phantom{-}1 & -3 & -5 \\ 0 & -\frac{3}{2} & \phantom{-}\frac{7}{2} & \phantom{-}\frac{29}{2} \\ 0 & \phantom{-}0 & \phantom{-}\frac{2}{3} & -\frac{98}{3} \end{matrix} \right] \end{align*}$

From here we can see that

$\displaystyle \begin{align*} \frac{2}{3} \,z &= -\frac{98}{3} \\ z &= -49 \end{align*}$.

Back substitution yields

$\displaystyle \begin{align*} -\frac{3}{2}\,y + \frac{7}{2}\,z &= \frac{29}{2} \\ -\frac{3}{2}\,y + \frac{343}{2} &= \frac{29}{2} \\ -\frac{3}{2}\,y &= -\frac{372}{2} \\ y &= -124 \end{align*}$

Back substitution again yields

$\displaystyle \begin{align*} 2\,x - y - 3\,z &= -5 \\ 2\,x - 124 + 147 &= -5 \\ 2\,x + 23 &= -5 \\ 2\,x &= -28 \\ x &= -14 \end{align*}$

So the solution to your system is $\displaystyle \begin{align*} \left[ \begin{matrix} x \\ y \\ z \end{matrix} \right] = \left[ \begin{matrix} -14 \\ -124 \\ -49 \end{matrix} \right] \end{align*}$. Substitution into any of your original equations will verify this to be correct.
 
Mathematics news on Phys.org
Seems the thread has lost its OP. I will therefore close it.
 
  • Like
Likes Wrichik Basu
Thread 'Video on imaginary numbers and some queries'
Hi, I was watching the following video. I found some points confusing. Could you please help me to understand the gaps? Thanks, in advance! Question 1: Around 4:22, the video says the following. So for those mathematicians, negative numbers didn't exist. You could subtract, that is find the difference between two positive quantities, but you couldn't have a negative answer or negative coefficients. Mathematicians were so averse to negative numbers that there was no single quadratic...
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Thread 'Unit Circle Double Angle Derivations'
Here I made a terrible mistake of assuming this to be an equilateral triangle and set 2sinx=1 => x=pi/6. Although this did derive the double angle formulas it also led into a terrible mess trying to find all the combinations of sides. I must have been tired and just assumed 6x=180 and 2sinx=1. By that time, I was so mindset that I nearly scolded a person for even saying 90-x. I wonder if this is a case of biased observation that seeks to dis credit me like Jesus of Nazareth since in reality...
Back
Top