- #1
yungman
- 5,755
- 293
Consider ##\nabla^2 u(x,y)=f(x,y)## in rectangular region bounded by (0,0),(0,b),(a,b)(a,0). And ##u(x,y)=0## on the boundary. Find Green's function ##G(x,y,x_0,y_0)##.
For Poisson's eq, let
[tex]u(x_0,y_0)=\sum_{m=1}^{\infty}\sum_{n=1}^{\infty}E_{mn}\sin\left(\frac{m\pi}{a}x_0\right)\sin\left(\frac{n\pi}{b}y_0\right)[/tex]
[tex]\Rightarrow\;\nabla^2 u=-\sum_{m=1}^{\infty}\sum_{n=1}^{\infty}E_{mn}\lambda_{mn}\sin\left(\frac{m\pi}{a}x\right)\sin\left(\frac{n\pi}{b}y\right) [/tex]
[tex]\hbox{Where}\;\lambda_{mn}=(\frac{m\pi}{a})^2+(\frac {n\pi}{b})^2[/tex]
Skipping a few steps:
[tex]E_{mn}=-\frac{4}{ab\lambda_{mn}}\int_0^a\int_0^b \nabla^2 u\;\sin\left(\frac{m\pi}{a}x\right)\sin\left(\frac{n\pi}{b}y\right)\;dydx[/tex]
[tex]\Rightarrow\;u(x_0,y_0)=\sum_{m=1}^{\infty}\sum_{n=1}^{\infty}E_{mn} \sin\left(\frac{m\pi}{a}x_0\right) \sin\left(\frac{n\pi}{b}y_0\right)= \sum_{m=1}^{\infty}\sum_{n=1}^{\infty} \left[- \frac{4}{ab\lambda_{mn}}\int_0^b\int_0^b \nabla^2 u\;\sin\left(\frac{m\pi}{a}x\right)\sin\left(\frac{m\pi}{a}x\right) \;dydx \right] \sin\left(\frac{m\pi}{a}x_0\right)\;\sin\left(\frac{n\pi}{b}y_0\right)[/tex]
For Poisson eq with zero boundary
[tex]u(x_0,y_0)=\frac{1}{2\pi}\int_0^a\int_0^b\; \nabla^2 u\;G(x,y,x_0,y_0)\;dydx[/tex]
[tex]\Rightarrow\;u(x_0,y_0)=\frac{1}{2\pi}\int_0^a\int_0^b\; \nabla^2 u\;G(x,y,x_0,y_0)\;dydx= \sum_{m=1}^{\infty}\sum_{n=1}^{\infty} \left[\left(-\frac{4}{ab\lambda_{mn}}\int_0^b\int_0^a \nabla^2 u\;\sin\left(\frac{m\pi}{a}x\right)\sin\left(\frac{n\pi}{b}y\right) \;dydx\right) \sin\left(\frac{m\pi}{a}x_0\right)\;\sin\left(\frac{n\pi}{b}y_0\right) \right] [/tex]
[tex]=\sum_{m=1}^{\infty}\sum_{n=1}^{\infty} \int_0^b \int_0^a \nabla^2 u\;\frac{-4}{ab\lambda_{mn}}\sin\left(\frac{m\pi}{a}x\right)\sin\left(\frac{n\pi}{b}y\right) \sin\left(\frac{m\pi}{a}x_0\right)\;\sin\left(\frac{n\pi}{b}y_0\right)dydx\; \hbox{ (1)}[/tex]
The book gave the next step:
[tex]u(x_0,y_0)=\int_0^a\int_0^b\; \nabla^2u \left[ \sum_{m=1}^{\infty}\sum_{n=1}^{\infty}-\frac{4}{ab\lambda_{mn}}\sin\left(\frac{m\pi}{a}x\right)\sin\left(\frac{n\pi}{b}y\right)\sin\left(\frac{m\pi}{a}x_0\right)\;\sin\left(\frac{n\pi}{b}y_0\right)\right] \;dydx \;\hbox{ (2)}[/tex]
Compare (1) and (2) above, How can you move the ##\sum_{m=1}^{\infty}\sum_{n=1}^{\infty}## inside the integral and pass ##\nabla^2u## where
[tex]\nabla^2 u=-\sum_{m=1}^{\infty}\sum_{n=1}^{\infty}E_{mn}\lambda_{mn}\sin\left(\frac{m\pi}{a}x\right)\sin\left(\frac{n\pi}{b}y\right) [/tex]
For Poisson's eq, let
[tex]u(x_0,y_0)=\sum_{m=1}^{\infty}\sum_{n=1}^{\infty}E_{mn}\sin\left(\frac{m\pi}{a}x_0\right)\sin\left(\frac{n\pi}{b}y_0\right)[/tex]
[tex]\Rightarrow\;\nabla^2 u=-\sum_{m=1}^{\infty}\sum_{n=1}^{\infty}E_{mn}\lambda_{mn}\sin\left(\frac{m\pi}{a}x\right)\sin\left(\frac{n\pi}{b}y\right) [/tex]
[tex]\hbox{Where}\;\lambda_{mn}=(\frac{m\pi}{a})^2+(\frac {n\pi}{b})^2[/tex]
Skipping a few steps:
[tex]E_{mn}=-\frac{4}{ab\lambda_{mn}}\int_0^a\int_0^b \nabla^2 u\;\sin\left(\frac{m\pi}{a}x\right)\sin\left(\frac{n\pi}{b}y\right)\;dydx[/tex]
[tex]\Rightarrow\;u(x_0,y_0)=\sum_{m=1}^{\infty}\sum_{n=1}^{\infty}E_{mn} \sin\left(\frac{m\pi}{a}x_0\right) \sin\left(\frac{n\pi}{b}y_0\right)= \sum_{m=1}^{\infty}\sum_{n=1}^{\infty} \left[- \frac{4}{ab\lambda_{mn}}\int_0^b\int_0^b \nabla^2 u\;\sin\left(\frac{m\pi}{a}x\right)\sin\left(\frac{m\pi}{a}x\right) \;dydx \right] \sin\left(\frac{m\pi}{a}x_0\right)\;\sin\left(\frac{n\pi}{b}y_0\right)[/tex]
For Poisson eq with zero boundary
[tex]u(x_0,y_0)=\frac{1}{2\pi}\int_0^a\int_0^b\; \nabla^2 u\;G(x,y,x_0,y_0)\;dydx[/tex]
[tex]\Rightarrow\;u(x_0,y_0)=\frac{1}{2\pi}\int_0^a\int_0^b\; \nabla^2 u\;G(x,y,x_0,y_0)\;dydx= \sum_{m=1}^{\infty}\sum_{n=1}^{\infty} \left[\left(-\frac{4}{ab\lambda_{mn}}\int_0^b\int_0^a \nabla^2 u\;\sin\left(\frac{m\pi}{a}x\right)\sin\left(\frac{n\pi}{b}y\right) \;dydx\right) \sin\left(\frac{m\pi}{a}x_0\right)\;\sin\left(\frac{n\pi}{b}y_0\right) \right] [/tex]
[tex]=\sum_{m=1}^{\infty}\sum_{n=1}^{\infty} \int_0^b \int_0^a \nabla^2 u\;\frac{-4}{ab\lambda_{mn}}\sin\left(\frac{m\pi}{a}x\right)\sin\left(\frac{n\pi}{b}y\right) \sin\left(\frac{m\pi}{a}x_0\right)\;\sin\left(\frac{n\pi}{b}y_0\right)dydx\; \hbox{ (1)}[/tex]
The book gave the next step:
[tex]u(x_0,y_0)=\int_0^a\int_0^b\; \nabla^2u \left[ \sum_{m=1}^{\infty}\sum_{n=1}^{\infty}-\frac{4}{ab\lambda_{mn}}\sin\left(\frac{m\pi}{a}x\right)\sin\left(\frac{n\pi}{b}y\right)\sin\left(\frac{m\pi}{a}x_0\right)\;\sin\left(\frac{n\pi}{b}y_0\right)\right] \;dydx \;\hbox{ (2)}[/tex]
Compare (1) and (2) above, How can you move the ##\sum_{m=1}^{\infty}\sum_{n=1}^{\infty}## inside the integral and pass ##\nabla^2u## where
[tex]\nabla^2 u=-\sum_{m=1}^{\infty}\sum_{n=1}^{\infty}E_{mn}\lambda_{mn}\sin\left(\frac{m\pi}{a}x\right)\sin\left(\frac{n\pi}{b}y\right) [/tex]
Last edited by a moderator: