- #1
yungman
- 5,755
- 293
The example is about finding the retarded scalar potential V at the origin from a plastic circular ring on xy plane center at origin spining at constant angular velocity [itex]\omega[/itex] with line charge density: [tex] \lambda = \lambda_0\left | sin \left (\frac {\theta}{2}\right ) \right |[/itex]
For finding retarded potential at the origin,
[tex] \hbox { Let }\; \theta = \phi - \omega t_r [/tex]
[tex]\lambda_{(\phi,t_r)} = \lambda_0\left | sin \left (\frac {\theta}{2}\right ) \right | = \lambda_0\left | sin \left (\frac {\phi -\omega t_r}{2}\right ) \right | [/tex]
Where [tex] V_{(\vec r,t)} = \frac 1 {4\pi \epsilon_0}\int \frac {\lambda_{(\phi,t_r)}}{a} dl' = \frac {\lambda_0} {4\pi \epsilon_0}\int_0^{2\pi} \frac {\left |sin \left (\frac {\phi - \omega t_r}{2}\right ) \right | }{a} ad\phi = \frac {\lambda_0} {4\pi \epsilon_0}\int_0^{2\pi} \left |sin \left (\frac {\theta}{2}\right ) \right | d\theta [/tex]
Notice the limit of the two integration still the same? My question is the book claim both [itex]\phi \;\hbox { and }\; \theta [/itex] are 0 to [itex]2\pi[/itex]. But if you do the convensional substitution:
[tex] \phi = 0 \Rightarrow \theta =-\frac { \omega t_r}{2} \hbox { and } \;\phi = 2\pi \Rightarrow \theta = 2\pi-\frac { \omega t_r}{2} [/tex]
This will change the limit. Please explain why I can do that.
Thanks
Alan
For finding retarded potential at the origin,
[tex] \hbox { Let }\; \theta = \phi - \omega t_r [/tex]
[tex]\lambda_{(\phi,t_r)} = \lambda_0\left | sin \left (\frac {\theta}{2}\right ) \right | = \lambda_0\left | sin \left (\frac {\phi -\omega t_r}{2}\right ) \right | [/tex]
Where [tex] V_{(\vec r,t)} = \frac 1 {4\pi \epsilon_0}\int \frac {\lambda_{(\phi,t_r)}}{a} dl' = \frac {\lambda_0} {4\pi \epsilon_0}\int_0^{2\pi} \frac {\left |sin \left (\frac {\phi - \omega t_r}{2}\right ) \right | }{a} ad\phi = \frac {\lambda_0} {4\pi \epsilon_0}\int_0^{2\pi} \left |sin \left (\frac {\theta}{2}\right ) \right | d\theta [/tex]
Notice the limit of the two integration still the same? My question is the book claim both [itex]\phi \;\hbox { and }\; \theta [/itex] are 0 to [itex]2\pi[/itex]. But if you do the convensional substitution:
[tex] \phi = 0 \Rightarrow \theta =-\frac { \omega t_r}{2} \hbox { and } \;\phi = 2\pi \Rightarrow \theta = 2\pi-\frac { \omega t_r}{2} [/tex]
This will change the limit. Please explain why I can do that.
Thanks
Alan
Last edited: