- #1
Titan97
Gold Member
- 450
- 18
Homework Statement
for ##0<\alpha,\beta<2##, prove that ##\int_0^4f(t)dt=2[\alpha f(\alpha)+\beta f(\beta)]##
Homework Equations
Mean value theorem: ##f'(c)=\frac{f(b)-f(a)}{b-a}##
The Attempt at a Solution
I got the answer for the question but I have made an assumption but I don't know if it's correct.
Let ##g(x)=\int_0^{x^2}f(t)dt## and let ##h(x)=g'(x)=2xf(x^2)##
now, applying intermediate value theorem for ##h(x)## in ##x\in (\alpha,\beta)##, there exists a point ##x=k## such that,
$$h(k)=\frac{h(\alpha)+h(\beta)}{2}=\alpha f(\alpha)+\beta f(\beta)$$
$$g'(k)=\alpha f(\alpha)+\beta f(\beta)$$
assumption: Now, for g(x), if ##x=k## also satisfies Mean value theorem and since ##0<k<2##,
$$g'(k)=\frac{f(2)-f(0)}{2}=\frac{1}{2}\int_0^{4}f(t)dt=\alpha f(\alpha)+\beta f(\beta)$$
Hence, $$\int_0^{4}f(t)dt=2[\alpha f(\alpha)+\beta f(\beta)]$$
Last edited by a moderator: