- #1
hurreechunder
- 18
- 3
Some numbers below: these are the standard molar enthalpies and entropies at 298K that I got from a website.
In the reaction FeO + CO = Fe + CO2, the deltas are:
delta H = (0+ -393) - (-266.5+ -110.5) = -16.3 KJ/mol.
delta S = (27.2+213.8) - (197.9+54) = -10.9 J/mol/K
Now at 1200 K,
Go = -16.3 + (1200)(-10.9) = -3.23
I have ignored the effect of temperature on enthalpy as both the reactants and the products are at the same temperature.
The issue with this is that it suggests that the reaction is spontaneous at 1200K. Therefore, in G = Go + RT ln Q, ln Q is >0 and therefore pCO2/pCO>1. However, we know the opposite to be the case in real life where pCO2/pCO = 1/2.3 in the blast furnace
Where am I going wrong??
In the reaction FeO + CO = Fe + CO2, the deltas are:
delta H = (0+ -393) - (-266.5+ -110.5) = -16.3 KJ/mol.
delta S = (27.2+213.8) - (197.9+54) = -10.9 J/mol/K
Now at 1200 K,
Go = -16.3 + (1200)(-10.9) = -3.23
I have ignored the effect of temperature on enthalpy as both the reactants and the products are at the same temperature.
The issue with this is that it suggests that the reaction is spontaneous at 1200K. Therefore, in G = Go + RT ln Q, ln Q is >0 and therefore pCO2/pCO>1. However, we know the opposite to be the case in real life where pCO2/pCO = 1/2.3 in the blast furnace
Where am I going wrong??
Hf (KJ/mol K) | Sf (J/mol K) | ||
FeO | s | -266.5 | 54 |
CO | g | -110.5 | 197.9 |
CO2 | g | -393.3 | 213.8 |
Fe | s | 0 | 27.2 |