- #1
cwill53
- 220
- 40
- Homework Statement
- I just need a quick check on something from Appendix A in "Nanostructures and Nanotechnology" by Douglas Natelson.
- Relevant Equations
- $$H|\psi \rangle=E|\psi \rangle$$
$$H^0|\psi^0 \rangle=E^0|\psi^0 \rangle$$
$$E_j=E^0_j+\sum_{i=1}^{n}\lambda ^iE^i_j$$
$$|\psi _j\rangle=|\psi^0 _j\rangle+\sum_{i=1}^{n}\lambda ^i|\psi^i _j\rangle$$
I'm currently reading this passage to review perturbation theory. Just before Equation (A.4), this passage tells me to take the inner product of the proposed eigenstate ##|\psi _j\rangle## with itself. Writing this out, I got:
$$1=\left \langle \psi _j| \psi _j\right \rangle=\left ( |\psi^0 _j\rangle+\sum_{k=1}^{n}\lambda ^k|\psi^k _j\rangle \right )^\dagger\left ( |\psi^0 _j\rangle+\sum_{i=1}^{n}\lambda ^i|\psi^i _j\rangle \right )$$
$$= \left ( \langle\psi^0 _j|+\sum_{i=1}^{n}\left (\lambda ^i \right )^*\langle\psi^i _j| \right )\left ( |\psi^0 _j\rangle+\sum_{k=1}^{n}\lambda ^k|\psi^k _j\rangle \right )$$
$$=\left \langle \psi^0 _j| \psi^0 _j\right \rangle+\sum_{i=1}^{n}\lambda ^i\left \langle \psi^0 _j| \psi^i _j\right \rangle+\sum_{i=1}^{n}\left (\lambda ^i \right )^*\langle\psi^i _j|\psi^0 _j\rangle+\sum_{i=1}^{n}\sum_{k=1}^{n}(\lambda ^i)^*\lambda ^k\left \langle \psi^i _j| \psi^k _j\right \rangle$$
I'm not sure how Equation (A.4) follows from this though.