Question regarding acceleration in spacetime

In summary, according to Brian Greene, an object's trajectory through spacetime must be straight if its motion is uniform through time, otherwise it is curved. This makes sense but there is something missing. I don't understand what is meant by "moving uniformly through time", and as far as my understanding goes, accelerating in a straight line through space still leads to a curved path when plotted on a position vs. time graph. However, if you were to view spacetime as a whole and observe my accelerated motion in a straight line through it, then my trajectory would be straight.
  • #1
Bos
28
0
In Brian Greene's book "The Fabric of the Cosmos," he says "For an object's trajectory through spacetime to be straight, the object must not only move in a straight line through space, but its motion must be uniform through time; that is, both its speed and direction must be unchanging and hence it must be moving with constant velocity."

This makes perfect sense but there's something that I don't get. Let's say I'm accelerating but moving in a perfectly straight line through space, wouldn't that also mean my trajectory through spacetime would be straight as well? Ofcourse, I understand that I am not moving uniformly through time and therefore if you were to plot my motion on a graph of space and time, it would obviously be curved, implying acceleration. But as far as my trajectory through spacetime goes, I can't see it being any other way than straight. How can it be a curved trajectory if I am moving perfectly straight through space?

Clearly I must be missing something. Please help.
 
Physics news on Phys.org
  • #2
Bos said:
This makes perfect sense but there's something that I don't get. Let's say I'm accelerating but moving in a perfectly straight line through space, wouldn't that also mean my trajectory through spacetime would be straight as well? Ofcourse, I understand that I am not moving uniformly through time and therefore if you were to plot my motion on a graph of space and time, it would obviously be curved, implying acceleration. But as far as my trajectory through spacetime goes, I can't see it being any other way than straight. How can it be a curved trajectory if I am moving perfectly straight through space?
I don't know quite what is meant by "moving uniformly through time", but even in Newtonian physics where there is no time dilation, accelerating in a straight line through space will still lead to a curved path when you plot it on a position vs. time graph. Try plotting x(t) = t^2 (accelerating along the x-axis) on a graph with an x-axis and a t axis and you'll see what I mean.
 
  • #3
Bos said:
if you were to plot my motion on a graph of space and time, it would obviously be curved
You seem to answer your own question: straight in space, but not in space-time. (You must also be mindful of whether what you're attempting to relate your ideas to is only a popularisation of GR.)
 
  • #4
I think you're missing the point. In special relativity, spacetime itself is the ultimate arbiter of accelerated motion. Spacetime itself provides the backdrop to which something can be said to accelerate, even in an empty universe. Therefore, an object's trajectory through spacetime is what tells us wether or not it is accelerating. If it is, its trajectory will be straight, and if not, it will be curved. But my question is if I am accelerating in a straight line through space, how can this trajectory be curved in spacetime. Remember, I am not talking about plotting points on a graph, I understand that argument. I am talking about if you were to look at spacetime as a whole and observe my accelerated motion in a straight line through it, how could this trajectory be curved? Hope I'm making myself clear, as this is hard to describe without pictures.
 
  • #5
In last post I meant to say if an object is accelerating, its trajectory will be curved, if not it will be straigh. Sorry
 
  • #6
Bos said:
a straight line through space, how can this trajectory be curved in spacetime

Space and space-time are not the same. Can you not imagine at piece of wire such that, when you look at it from a particular angle (ie. in 2D), it seems straight however if you turn it in 3D you'll realize it is actually curved? In GR what matters is whether the path is curved in 4D space-time.
 
Last edited:
  • #7
Yes, I realize this. But if you were able to view the whole of spacetime from an outside perspective (similar to the block universe pics), and in that spacetime block you saw a baseball being thrown. Wouldn't you observe its trajectory in spacetime to be arched, just like that of its actual trajectory in space. Therefore, if I am accelerating in a straight line in space, shouldn't my trajectory in spacetime be straight as well? The whole point of the question is that it can't be straight because if it were, it would imply that I'm not accelerating, as Brian Greene says. But I obviously am accelerating so my trajectory through spacetime must be curved. Yet as I said, if you saw an object's curved trajectory inside the spacetime block from an outside perspective, it would mean that the object is changing speed AND direction. But I am only changing speed. Does this make sense?
 
  • #8
Bos said:
But my question is if I am accelerating in a straight line through space, how can this trajectory be curved in spacetime.
I don't understand--why wouldn't it be?
Bos said:
Remember, I am not talking about plotting points on a graph, I understand that argument. I am talking about if you were to look at spacetime as a whole
"Spacetime as a whole" looks exactly like a graph of position vs. time in SR (as measured in an inertial frame). What else would it look like?
Bos said:
and observe my accelerated motion in a straight line through it
A straight line through what, space or spacetime? You can't have accelerated motion that makes a straight line through spacetime, although of course you can accelerate in a straight line through space.
 
Last edited:
  • #9
Right. I think my confusion was that I thought an objects' spacetime trajectory was analogous to its space trajectory, only also moving forward through time. I guess I couldn't separate the two as independent of each other. thanx
 
  • #10
Bos said:
In Brian Greene's book "The Fabric of the Cosmos," he says "For an object's trajectory through spacetime to be straight, the object must not only move in a straight line through space, but its motion must be uniform through time; that is, both its speed and direction must be unchanging and hence it must be moving with constant velocity."

This makes perfect sense but there's something that I don't get. Let's say I'm accelerating but moving in a perfectly straight line through space, wouldn't that also mean my trajectory through spacetime would be straight as well? Ofcourse, I understand that I am not moving uniformly through time and therefore if you were to plot my motion on a graph of space and time, it would obviously be curved, implying acceleration. But as far as my trajectory through spacetime goes, I can't see it being any other way than straight. How can it be a curved trajectory if I am moving perfectly straight through space?

Clearly I must be missing something. Please help.

Bos,

Here's one way of looking at it ...

When one is stationary in flat spacetime, he is inertial. He travels a straight path thru spacetime, or Minkowski’s 4-space if you prefer. Inertial observers do not believe they are moving, but they are actually traveling thru time. However, since space & time are fused into a continuum, we all travel thru spacetime whether stationary or not. Also, let us assume that all observers travel thru spacetime at identical speed (this is key point here), similarly as light travels at invariant c...

Consider 2 inertial observers, A & B. Both are traveling straight and parallel paths thru spacetime, and hence their relative separation doesn't change. Time ticks at the same rate for both. Now then, observer B accelerates off in speed alone to a new state of inertial motion. Per A, B’s path thru the spacetime cannot remain straight. To create separation over time (ie v>0), B has to turn in direction thru 4-space (their paths become unparallel) since B cannot change his invariant speed thru 4-space. Per A who is still going straight, B must then travel a curved path thru the flat 4-space as B accelerates.

pess
 

FAQ: Question regarding acceleration in spacetime

What is meant by acceleration in spacetime?

Acceleration in spacetime refers to the rate of change of velocity over time in the context of Einstein's theory of general relativity. It takes into account both changes in speed and changes in direction.

How does acceleration in spacetime differ from acceleration in traditional physics?

Acceleration in traditional physics is defined as the rate of change of velocity over time in a three-dimensional space. In contrast, acceleration in spacetime takes into account the curvature of space and time caused by massive objects.

Can objects accelerate in spacetime without a force being applied?

Yes, according to general relativity, objects can accelerate in spacetime without a force being applied. This is because the presence of massive objects causes the curvature of spacetime, which can affect the path of an object's motion.

How does acceleration in spacetime affect the perception of time?

Acceleration in spacetime can affect the perception of time through time dilation, a phenomenon predicted by Einstein's theory of relativity. This means that time passes slower for an observer in a strong gravitational field compared to an observer in a weaker gravitational field.

Is it possible to travel through spacetime faster than the speed of light?

No, according to the theory of relativity, it is not possible to travel through spacetime faster than the speed of light. This is because the speed of light is considered to be the maximum speed at which matter and information can travel in the universe.

Similar threads

Replies
8
Views
1K
Replies
13
Views
998
Replies
12
Views
2K
Replies
23
Views
802
Replies
35
Views
4K
Replies
14
Views
901
Back
Top