- #1
yungman
- 5,755
- 293
In page 3 of this articlehttp://faculty.uml.edu/cbaird/95.657%282012%29/Helmholtz_Decomposition.pdf
I have two question:
I use ##\vec r## for ##\vec x## and ##\vec r'## for ##\vec x'## in the article.
[tex]\vec F(\vec r)=\frac {1}{4\pi}\nabla\left[\int_{v'}\nabla'\cdot\left(\frac{\vec F(\vec r')}{|\vec r-\vec r'|}\right)d\tau'-\int_{v'}\frac{\nabla'\cdot \vec F(\vec r')}{|\vec r-\vec r'|}d\tau'\right]+\frac {1}{4\pi}\nabla\times\left[-\int_{v'}\nabla'\times\left(\frac{\vec F(\vec r')}{|\vec r-\vec r'|}\right)d\tau'+\int_{v'}\frac{\nabla'\times \vec F(\vec r')}{|\vec r-\vec r'|}d\tau'\right][/tex]
(1) it said
[tex]\frac {1}{4\pi}\nabla\int_{v'}\nabla'\cdot\left(\frac{\vec F(\vec r')}{|\vec r-\vec r'|}\right)d\tau'=\int_{s'}\left(\frac{\vec F(\vec r')}{|\vec r-\vec r'|}\right)\cdot d\vec s'[/tex]
where this term goes to zero as ##|\vec r-\vec r'|\rightarrow\;\infty##. But not the ##\int_{v'}\frac{\nabla'\cdot \vec F(\vec r')}{|\vec r-\vec r'|}d\tau'##. Why is this true?
(2)Also it said using a version of Stokes theorem to change the third term ##\int_{v'}\nabla'\times\left(\frac{\vec F(\vec r')}{|\vec r-\vec r'|}\right)d\tau' ## to a surface integral and it will goes to zero as ##|\vec r-\vec r'|\rightarrow\;\infty##. I don't know a version of Stokes theorem that change from a volume integral to surface integral.
Please help.
Thanks
I have two question:
I use ##\vec r## for ##\vec x## and ##\vec r'## for ##\vec x'## in the article.
[tex]\vec F(\vec r)=\frac {1}{4\pi}\nabla\left[\int_{v'}\nabla'\cdot\left(\frac{\vec F(\vec r')}{|\vec r-\vec r'|}\right)d\tau'-\int_{v'}\frac{\nabla'\cdot \vec F(\vec r')}{|\vec r-\vec r'|}d\tau'\right]+\frac {1}{4\pi}\nabla\times\left[-\int_{v'}\nabla'\times\left(\frac{\vec F(\vec r')}{|\vec r-\vec r'|}\right)d\tau'+\int_{v'}\frac{\nabla'\times \vec F(\vec r')}{|\vec r-\vec r'|}d\tau'\right][/tex]
(1) it said
[tex]\frac {1}{4\pi}\nabla\int_{v'}\nabla'\cdot\left(\frac{\vec F(\vec r')}{|\vec r-\vec r'|}\right)d\tau'=\int_{s'}\left(\frac{\vec F(\vec r')}{|\vec r-\vec r'|}\right)\cdot d\vec s'[/tex]
where this term goes to zero as ##|\vec r-\vec r'|\rightarrow\;\infty##. But not the ##\int_{v'}\frac{\nabla'\cdot \vec F(\vec r')}{|\vec r-\vec r'|}d\tau'##. Why is this true?
(2)Also it said using a version of Stokes theorem to change the third term ##\int_{v'}\nabla'\times\left(\frac{\vec F(\vec r')}{|\vec r-\vec r'|}\right)d\tau' ## to a surface integral and it will goes to zero as ##|\vec r-\vec r'|\rightarrow\;\infty##. I don't know a version of Stokes theorem that change from a volume integral to surface integral.
Please help.
Thanks